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TERAFLUX

What is TERAFLUX about

Architecture+Programmability+Reliability

of 

Future (single chip)

Many-cores

(targeting 1000+ cores)
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Future Scenarios

G. Hendry, K. Bergman, “Hybrid 
On-chip Data Networks”, 
HotChips-22, Stanford, CA –
Aug. 2010

== 3D stacking, 8nm, 3D transistors, Graphene

Pawloski, May 2011, Exascale Seminar, Ghent
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Fab D1X (OR), 42 (AZ) starting the 14nm node in 2013
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Fundamental approach: DATAFLOW

A Scheme of Computation in which 
an activity is initiated by presence of 

the data it needs to perform its 
function

(Jack Dennis)
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Recent Projects/Efforts towards 

DATAFLOW
• Maxeler (UK) selling “dataflow 

computer” to J.P. Morgan �

about 350x speedup vs. 

standard x86 cores

• DARPA funding 25M$ for 

UPHC program, encompassing:

– Gao’s dataflow execution model 

(codelet based) – SWARM by ETI

– Intel’s Runnamede project
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UPHC=Ubiquitus 

High-Performance Computing
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DRAMDRAMDRAMDRAM

NoC

SC
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IOx=I/O or SC Core

IO1
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IO2

(Keyboard)

IO3
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AC AC AC AC AC AC AC AC

AC AC AC AC AC AC AC AC
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AC AC AC AC AC AC AC AC
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AC AC AC AC AC AC AC AC

TERAFLUX – Future Many-cores
Key Challenges: Architecture+Programmability+Reliability

TERAFLUX Key Facts:

• FET – Integrated Project – 10 

Partners  – 4 years – 2010-2013

• 7.5 Meuro Total cost (5.7 Meuro

EU funded)

TERAFLUX-INCO Key Facts:

• FET – EU Worldwide Cooperation –

Extends TERAFLUX to an additional 

USA partner for 21 months

• 546 Keuro Total cost (420 Keuro EU 

funded)
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Abstraction Layer

and Reliability Layer

Compilation

Tools

Source code

Programming

Model

Data

dependencies
Transactional

memory

Teradevice

hardware

(simulated)

Threads

Virtual CPUs

Extract TLP Locality optimizations

T1

T2T2

possibly

1,000-10,000 cores...

WP2

WP3

WP4

WP5

WP7

WP6

VCPU VCPU VCPU VCPU VCPU

PC PC PC P PCPU PCPU PCPUPCPUPC PCPU PCPUPCPU

APPLICATIONSAPPLICATIONS

• 1000 Billion- or 1 TERA-

device computing 

platforms pose new 

challenges:
– (at least) 

programmability, 

complexity of design, 

reliability

• TERAFLUX context:
– High performance 

computing and 

applications (not 

necessarily embedded)

• TERAFLUX scope:
– Exploiting a less 

exploited path 

(DATAFLOW) at each 

level of abstraction

Working Hypothesis
TERA LUX.EUF
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Cj:

CL$H

PU
Core level HW 

support

(e.g. LTSU+LFDU)

LEGENDA:

n = # of nodes

m = # of cores per node

u=  # of DRAM controllers  insisting on the

Unified Physical Address Space

z = # of I/O Hubs

Cj = j-th core   (j=1..m)

MC = Memory Controller

DTSU = Distributed Thread-Scheduler Unit

DFDU = Distributed Fault-Detection Unit

LL$H = Last Level Cache Hierarchy

NODE 

OPTIONAL

NoC

N1
…

chip

Nn

NI NI NI NI

NI

C1

NI

Cm… LL$H

Nk:

DTSU

LOCAL INTERCONNECT

MEMORY

MC

NI

NODE LEVEL

CHIP LEVEL

CORE LEVEL

node

core

EXTERNAL

or OTHER  LAYER

CL$H = Core Level Cache Hierarchy

PU = Processing Unit

LTSU = Local Thread-Scheduler Unit

LFDU = Local Fault-Detection Unit

Nk = k-th Node   (k=1..n)

NI = Network Interface

NoC = Network on Chip

DFDU

I/O hub

NI

DEVICESDRAMMEMORYDRAMMEMORY

MEMORY

MC …

…
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Our pillars

• FIXED and MOST-USED ISA (x86)

• MANYCORE FULL SYSTEM SIMULATOR (COTSon)

• REAL WORLD APPLICATIONS (e.g. GROMACS)

• SYNCHRONIZATION: TRANSACTIONAL MEMORY

• GCC based TOOL-CHAIN

• OFF-THE-SHELF COMPONENTS FOR CORES, OS, 

NOC,MEMORY HIERARCHY

• FDU AND TSU (Fault Detection Unit and Thread 

Scheduling Unit)
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A REVIEW OF RECENT MANY-CORES
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HotChips 2011

• Hot Chips papers suggest that the rest of the 

world is moving in a different direction: large 

numbers of relatively simple CPUs. But the trend 

is reinforcing a long-appreciated set of 

questions—as the number of cores grows, how 

do you deal scalability with interconnect, 

memory hierarchy, coherency, and intra-thread 

synchronization? Answers to these questions 

depend on the size of the design, the application 

space, and the heritage of the design team.

R. Wilson, EETimes, 24/8/2011Roberto Giorgi – giorgi@unisi.it  --- http://teraflux.eu
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SARC Architecture

The SARC architecture, IEEE micro, Oct. 2010, vol. 30, n. 5, pp. 16-29

More recently (20110908), 

Dimitris Nikoloupos 

confirmed me that there 

won’t be anymore the LS 

as it will be integrated in 

the L2.
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IBM BlueGene/Q

• Ruud Haring, The IBM Blue Gene/Q Compute chip+SIMD floating-point unit, 
HotChips Symposium, Aug 2011.

Rather than replicate more 

than 18 of these large 

cores, IBM chose to give 

each core hardware 

support for four 

concurrent threads, so 

under ideal circumstances 

the chip can behave almost 

as a 64-CPU system

Roberto Giorgi – giorgi@unisi.it  --- http://teraflux.eu
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BlueGene/Q module and system

A. Stiller – translation from the original article from German in c’t by Marcel Sieslack
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Cavium – Octeon II CN6880

Cavium OCTEON II CN6880 Multi-Core MIPS64 Processor, HotChips Symposium, Aug. 2011.

Cavium relies primarily on 

locks for synchronization, 

assisted by facilities in the 

scheduler hardware

Roberto Giorgi – giorgi@unisi.it  --- http://teraflux.eu
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Octeon II (2)

Roberto Giorgi – giorgi@unisi.it  --- http://teraflux.eu
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Godson-T

Cui HM, Wang L, Fang DR et al. Landing stencil code on Godson-T. JOURNAL OF COMPUTER SCIENCE 
ANDTECHNOLOGY 25(4): 886–894 July 2010.

Roberto Giorgi – giorgi@unisi.it  --- http://teraflux.eu
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K-Computer

Mitsuo Yokokawa, Fumiyoshi Shoji, Atsuya Uno, Motoyoshi Kurokawa, and Tadashi Watanabe. 2011. The K computer: Japanese next-generation 
supercomputer development project. InProceedings of the 17th IEEE/ACM international symposium on Low-power electronics and design (ISLPED '11).
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K-Computer (2)

• S. Fumiyoshi, The K Computer: Project Overview

Roberto Giorgi – giorgi@unisi.it  --- http://teraflux.eu
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IBM Cyclops-64

Juergen Ributzka, Yuhei Hayashi, Joseph B. Manzano, and Guang R. Gao. 2011. The elephant and the mice: the role of non-strict fine-grain synchronization 
for modern many-core architectures. In Proceedings of the international conference on Supercomputing (ICS '11). ACM, New York, NY, USA, 338-347.
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TERAFLUX RESEARCH OVERVIEW
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TERAFLUX

WP2 - APPLICATIONS
• MPI applications

• Measures with executions 

with 16, 32, 64, 128 procs. 

• Linear regression projections

• Off-chip Memory Bandwidth

– 1K cores will need more than 

256GB/s sustained bandwidth

– 3x than current DDR3

• Total memory footprint for MPI applications

– Total memory footprint increases with the number of processors

– Manycores with more than 100 cores will require a few 

dozens GBs of main memory

• Alternative programming models are required to  deal with memory  

requirements for scalability

M. Pavlovic, et al. “On the Memory System Requirements of Scientific Applications:

Four Case Studies”, In IEEE Intl. Symp. On Workload Characterization (IISWC), Nov 2011.
Roberto Giorgi – giorgi@unisi.it  --- http://teraflux.eu



TERAFLUX

WP3 – PROGRAMMING MODEL

Transactions and Dataflow additions to Scala

– Modified to the Scala compiler to include transactional 

constructs – surveyed other possibilities using closures

– Runtime STM support 

– Statically Typed Dataflow Library

– Reimplementation of the Scala parallel collection using  

dataflow plus transactions

– Analysis for Lee-TM of benefits of Dataflow plus transactions

Daniel Goodman, Behram Khan, Salman Khan, Chris Kirkham, Mikel Lujan and Ian Watson. 

MUTS: Native Scala Constructs for Software Transactional Memory. In: Scala Days Workshop, 

Stanford, California, June 2-3, 2011.

http://apt.cs.man.ac.uk/projects/TERAFLUX/MUTS/
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WP4 – COMPILATION TOOLS

25

Feng Li, Antoniu Pop, and Albert Cohen. Extending loop distribution 

to ps-dswp. In: 1st Workshop on Intermediate Representations 

(WIR’11, associated with CGO), Chamonix, France, April 2011.
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WP5 - RELIABILITY

• DOUBLE EXECUTION detects control flow AND data errors

• Runs each thread twice, once 

as a leading thread t and 

second time as a trailing thread t’

• The duplicated threads can run on 

the same core or on different cores 

of the same node/cluster

• Each execution generates signature of output results

• At completion compare the two signatures, if consistent,

the D-TSU writes its results to subsequent thread frames

• If not, no commitment 

and recovery

Sebastian Weis, Arne Garbade, Julian Wolf, Bernhard Fechner, Avi Mendelson, 

Roberto Giorgi, and Theo Ungerer. A Fault Detection and Recovery 

Architecture for a Teradevice Dataflow System. In Data-Flow Execution Models 

for Extreme Scale Computing (DFM) 2011 Workshop Proceedings. IEEE 

Computer Society, 2011 
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WP6 - ARCHITECTURE

27

 

void main() { 

   int a = 4; 

   int b = 4; 

   int add, mul, c; 

    

   add = a + b; 

   mul = a * b; 

   c = mul/add; 

} 

.c (sequential) 

Roberto Giorgi – giorgi@unisi.it  --- http://teraflux.eu

.x86 assembly (parallel)

add=tread(FP 4 |2)

mul=tread(FP 4 | 4) 

c = mul/add

tdestroy

FP2. add FP3. mul

FP1. main

FP4. div

a=tread(FP2|2)

b=tread(FP2|4)

twrite(FP4|2,a+b)

a=tread(FP2|2)

b=tread(FP2|4) 

twrite(FP4|4,a*b)

FP4=tcschedule(div, 2)FP2=tschedule(add, 3)

twrite(FP2|2,a)

twrite(FP2|4,b)

twrite(FP3|2,a)

twrite(FP3|4,b)

FP3=tschedule(mul,3)

Other Instructions

Frame Allocation Instruction

Node: Frame ID. Thread Name
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main: movq $4, %R8

movq $4, %R9

movq $1, %RAX

cmpq $1, %RAX

TSCHEDULE $add, $3, %R10

TSCHEDULE $mult, $3, %R11

TSCHEDULE $div, $2, %R12

TWRITE %R8, %R10, $2

TWRITE %R9, %R10, $3

TWRITE %R12, %R10, $4

TWRITE %R8, %R11, $2

TWRITE %R9, %R11, $3

TWRITE %R12, %R11, $4

TDESTROY

mult: TREAD $2, %R8

TREAD $3, %R9

TREAD $4, %R10

movq %R8, %RAX

mulq %R9

movq %RAX, %R11

TWRITE %R11, %R10, $3

TDESTROY

add: TREAD $2, %R8

TREAD $3, %R9

TREAD $4, %R10

movq %R8, %R11

addq %R9, %R11

TWRITE %R11, %R10, $2

TDESTROY

div: TREAD $2, %R8

TREAD $3, %R9

movq $0, %RDX

movq %R9, %RAX

divq %R8

movq %RAX, %R10

TDESTROY

.x86 assembly (parallel)

Roberto Giorgi – giorgi@unisi.it  --- http://teraflux.eu
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T* (or T86) ISE: TSCHEDULE/TDESTROY
T* INSTRUCTIONS IMPLIED COMPILER TARGET

Synopsis TSCHEDULE RS1, RS2, RD TSCHEDULE(<IP>, <SC>, &<frame_pointer>)

Description This instruction allocates the resources (a DF-frame of size RS2 words and a corresponding

entry in the Distributed Thread Scheduler – or DTS) for a new DF-thread and returns its

Frame Pointer (FP) in RD. RS1 specifies the Instruction Pointer (IP) of the first instruction of

the code of this DF-thread and RS2 specifies the Synchronization Count (SC). Finally the

zero flag is logically negated.

Notes The allocated DF-thread is not executed until its SC reaches 0. The TSCHEDULE can be

conditional or non-conditional based on the value stored in the zero flag. If the zero flag is

set to 1 then the TSCHEDULE will take effect, otherwise it is ignored. Two subsequent

TSCHEDULE implement an if-then-else.

Synopsis TDESTROY TDESTROY

Description The thread that invokes TDESTROY finishes and its DF-frame is freed, (the corresponding

entry in the Thread Scheduling Unit is also freed).

Notes -

Antoni Portero, Zhibin Yu, Roberto Giorgi, "T-Star (T*): An x86-64 ISA Extension to support thread execution on many 

cores", HiPEAC ACACES-2011, ISBN:978 90 382 17987, Fiuggi, Italy, July 2011, pp. 277-280.



TERAFLUX

T* INSTRUCTIONS IMPLIED COMPILER TARGET

Synopsis TWRITE RS, RD, offset *(<frame_pointer> + <offset>) = (<source_register>)

Description The data in RS is stored into the DF-frame pointed to by RD at the specified offset.

Notes Side Effect: The Distributed Thread Scheduler decrements the SC of the corresponding DF-

thread entry (located through the FP): SCFP = SCFP-1

Synopsis TREAD offset, RD (<destination_register>) = *(<self_frame_pointer> +

<offset>)

Description Loads the data indexed by 'offset' from the self (current thread) DF-frame into RD.

Notes Assumption: the DTS has to load into the register implicitly used by TREAD the value

<self_frame_pointer>. In a x86-64 implementation, we can reserve RAX for this purpose.

T* (or T86) ISE: TWRITE/TREAD

Roberto Giorgi – giorgi@unisi.it  --- http://teraflux.eu
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T* INSTRUCTIONS IMPLIED COMPILER TARGET

Synopsis TALLOC RS1, RS2, RD <pointer> = TALLOC (<size>, <type>)

Description Allocates a block of memory of RS1 words. The pointer to it is stored in RD. RS2 specifies

the special purpose memory type.

Notes The Distributed Thread Scheduler tracks the memory allocated. An implementation can

code <type> in the 2 LSB of <size>

Synopsis TFREE (RS) TFREE(<pointer>)

Description Frees memory pointed to by RS.

Notes The Thread Scheduling Unit tracks the memory deallocated.

T* (or T86) ISE: TALLOC/TFREE

Roberto Giorgi – giorgi@unisi.it  --- http://teraflux.eu
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DTS – Distributed Thread Scheduler
(formerly called TSU)

NoC

NI NI

…

NI NI

LTSU1,1 LTSU1,m

DTSU1

…
N1:

LTSU1,n LTSUn,m

DTSUn

…
Nn:

# of cores = n x m n = # of nodes m = # of cores per node

32Roberto Giorgi – giorgi@unisi.it  --- http://teraflux.eu
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Chip

Distributed Thread Scheduler

A 2-node x 4-core example

C11

C14

C12

C13

• Core (Cjk)

– Off-the-shelf cores (may include L1, 

L2slice)

– Minimal ISA extension

• Local Thread Scheduling Unit (LTSU)

– Manages threads on this Core

• Distributed Thread Scheduling Unit 

(DTSU)

– Distributes threads among Nodes

• Node

– Groups Cores+Resources

Node1

C21

C24

C22

C23

Node2

33Roberto Giorgi – giorgi@unisi.it  --- http://teraflux.eu
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Scheduling Example

C11

C14

C12

C13

C21

C24

C22

C23

• LTSU11 � DTSU1:
– I need a new frame

• DTSU1 � LTSU13:
– You’re available, give one frame to LTSU11

• LTSU13 � LTSU11:
– Here is a frame you can use

• LTSU14 � DTSU1:

– “I need a new frame”

• DTSU1 � DTSU2:

– LSE14 needs a frame, I don’t have it

• DTSU2 � LTSU22:

– Give a frame to LSE14

– LTSU22 � LTSU14:

– Here is a frame you can use

What if every PE in the cluster is busy?

Fast communication � low overhead

Node2

Node1

34Roberto Giorgi – giorgi@unisi.it  --- http://teraflux.eu
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Fine-Grain Thread Scheduling
Plurality CUDA TFlux SSI DTA

HW/SW HW + SW HW + SW SW HW HW
Prog. Model

Exec. Model

Architecture

Custom C 
language 
extensions

Custom C 
language 
extensions

Custom C 
preprocessor 
macros 
(#pragma)

Standard thread-
oriented C 
libraries  
(pthreads)

Standard thread-
oriented C 
libraries 
(pthreads)

- Pool of RISC 
processors
- Uniform shared 
memory
- Hardware 
scheduler , 
synchronizer and 
load balancer

- Each thread 
block is split into 
warps (thread 
block.
- Each thread 
block is executed 
by only one 
multiprocessor.
- A multi-
processor can 
execute several 
blocks 
concurrently.

High-level 
threads are 
mapped to OS 
threads, using the 
standard OS 
programming 
interfaces as 
backend.

Subset static 
interleaved 
scheduling of 
fine-grained / 
coarse-grained 
threads 
performed by a 
hardware Task 
Scheduling Unit 
(TSU)

- Decoupling 
memory and 
execution activity 
of non-blocking 
threads.
- Threads are 
synchronized and 
communicate 
each other in a 
producer-
consumer 
fashion.

Complex 
hardware 
subsystem:
synchronizer, 
scheduler, load 
balancer

SIMD, on-chip 
shared memory

Everything is 
implemented in 
software: can run 
on any general 
purpose 
architecture

Hardware 
scheduler (TSU) 
+ extensions to a 
VLIW prototype

Thread 
management and 
frame memory 
management 
implemented in 
hardware

DTA=Decoupled Threaded Architecture

Roberto Giorgi – giorgi@unisi.it  --- http://teraflux.eu
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fib(21): number of threads

0
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COTSon

Simulator

infrastructure

. . .

Simulator  

“illusion”

(SW should 

only assume

what seen at 

this level) X86-64 ISA 

cruncher-1

X86-64 ISA 

cruncher-2

X86-64 ISA 

cruncher-3

X86-64 ISA 

cruncher-N

LINUX +

TFX scheduler patch awareness

TSU

FDU

scheduling

TFX APPS

(e.g. GROMACS)

LEGACY APPS

(e.g. ORACLE DB)

(x86-64 ISA      &    NEW  Memory Model)

DF-threads L-/S-threads

WP7: Evaluating a MANY-CORE chip of the future 

(2020), i.e., 1000+ cores on a chip
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AMD SIMnow and COTSon

38Roberto Giorgi – giorgi@unisi.it  --- http://teraflux.eu
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COTSon Overview 

39Roberto Giorgi – giorgi@unisi.it  --- http://teraflux.eu
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The ambition of TERAFLUX is however

to be able of changing such machine in a flexible way, 

while tackling research challenges on programmability, 

architectural design and reliability. 

Therefore, we have the need to stress the COTSon platform, 

in order to being able to simulate 1000 cores.

40Roberto Giorgi – giorgi@unisi.it  --- http://teraflux.eu
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Comparison among different approaches for doing research related to 1000-core 

computing system (Information revised from data of the RAMP project)

SMP Cluster FPGA Emulator Simulator

Scalability

(1K cores)

C A A A A

Cost (1K cores) F(€40M) C B(€0.1-0.2M) A+ (€0.01M) A+(€0.01M)

Power/Space (Kw, racks) D (120 kw, 12 

racks)

D (120 kw, 12 

racks)

A (1.5 kw, 0.3 

racks)

A+ (0.1 kw, 

0.1racks)

A+ (0.1 kw, 0.1 

racks )

Observability D C A+ A+ A+

Reproducibility B D A+ A+ A+

Reconfigurability D C A+ A+ A+

Credibility A+ A+ B+/A- F/D C

Development time B B C A+ A+

Performance (clock) A (2GHz) A(3GHz) C (0.1 GHz) B(≈ 0.9 of original) C(1/10 to 1/1000 

SMP)

x86-64 ISA A+ A+ F A+ A+

Modifiable F F B A A

GPA D D B+/A- B A

41Roberto Giorgi – giorgi@unisi.it  --- http://teraflux.eu
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FUNCTIONAL/TIMING SIMULATION

Functional 
Simulator

Timing 
Simulator

Functional-First (Trace-driven)
+Fast
- No timing feedback

+ Timing feedback
- Tight Coupling
- Very slow

Timing and Functional
Simulator Integrated (SimOS)

- Complex, no reuse, very slow

Timing-Directed (Exec-driven)Functional 
Simulator

Timing 
Simulator

�Complete Timing
�No? Function

�No Timing
�Complete Function

Timing-First (Multifacet)Functional 
Simulator

Timing 
Simulator

�Complete Timing
�Partial Function

�No Timing
�Complete Function

+ Timing feedback
+ Using existing simulators
+ Software development advantages
- Slow

Source: Multifacet Project (www.cs.wisc.edu/multifacet) -

[Mauer02-sigmetrics-Full_System Timing_First Simulation]

sp
e

e
d

�Complete Function �Partial Timing

a
cc

u
ra

cy
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COTSon: FUNCTIONAL-DIRECTED

• A variant of “functional first”
• Adds timing feedback at coarse granularity 

(100s – 1000s of instructions)

• Applications see an approximation of time
• May miss some fine-grain timing interaction

• Compatible with fast (caching) emulators and samplers

Roberto Giorgi – giorgi@unisi.it  --- http://teraflux.eu
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OTHER RECENT X64 SIMULATORS

44

Multi-node

Heirman120401-ISPASS Tutorial

The SNIPER multi-core simulator

Roberto Giorgi – giorgi@unisi.it  --- http://teraflux.eu

Timing-directed/integrated
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Simulation booting up 1024 cores. (1) COTSon execution of 32 SimNow instances. 

(2) Each instance manages 32 cores. Host: 48 cores, 256 GB memory

Note: the simulation is PARALLEL at GUEST NODE-LEVEL and it’s also possible

to distribute the simulation on several HOST NODES 45Roberto Giorgi – giorgi@unisi.it  --- http://teraflux.eu
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INITIAL EXPERIMENTAL RESULTS

The proposed simulation framework has

been validated running applications and

benchmarks on a target machine with up

to 1024 cores, operating in accordance

with dataflow principle on standard cores

We run several applications and

benchmarks based on well established

programming models (mainly OpenMP

and MPI):

• NAS Parallel Benchmark (NPB)

• Graph500 and HPL 2.0 Linpack

• Sequential Recursive Fibonacci

number of cores

ti
m

e
 (

m
s)
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TERAFLUX

Major Technical Innovations in TERAFLUX

• Fragmenting the Applications in Finer grained DF-threads:

– DF-threads allow an easy way to decouple memory accesses, therefore hiding 

memory latencies, balancing the load, managing fault, temperature information 

without fine grain intervention of the software.

• Possibility to repeat the execution of a DF-thread in case this thread happened 

to be on a core later discovered as faulty

• Taking advantage of a “direct” dataflow communication of the data (through 

what we call DF-frames).

• Synchronizing threads while taking advantage of native dataflow mechanism 

(e.g. several threads can be synchronized at a barrier)

– DF-threads allow (atomic ) Transactional semantics (DF meets TM)

• A Thread Scheduling Unit  would allow fast thread switching and scheduling, 

besides the OS scheduler; scalable and distributed

• A Fault Detection Unit works in conjunction with TSU
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TERAFLUX

TERAFLUX SIMULATOR (COTSon)

http://cotson.sf.net

48

HP-Labs COTSon is OPEN-SOURCE
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TERAFLUX
Exploiting dataflow parallelism in Teradevice Computing

PROJECT NUMBER: 249013

http://teraflux.eu

FUTURE AND

EMERGING

TECHNOLOGIES

PROJECT N. 249013

SEVENTH FRAMEWORK

PROGRAMME THEME

FET proactive 1 (ICT-2009.8.1) 

Concurrent Tera-Device Computing



TERAFLUX

BACKUP SLIDES
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TERAFLUX

TERAFLUX TOOLCHAIN (Jan. 2011)

Author -

Partner

51

TFX

BINARY
(TBD)

S2S

(PM 

transformatio

n)

COMPILATION 

TOOLS

TFX

C-LEVEL
(TBD)

TFX

C-LEVEL
(TBD)

TFX

SOURCE
(HMPP,  OPENMP, 

SCALA, STARSS,…)

TFX

SOURCE
(DDM, HMPP,  OPENMP, 

SCALA, STARSS,…)

S2S

(PM 

transformation)
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TCRQ – simple FIFO queue

FFNCID

Free frame table

Control logic

Distributed TSU - structures

• FreeFrameTable (CID – Core ID, FFN – number of free frames)
• Keeps track of the occupancy of processors inside a cluster 
• Updated on each TDestroy and accepted TSchedule

• TCRQ – ThreadScheduleRequestQueue
• Holds unserved ThreadScheduleRequest messages
• Message is pushed into queue when there are no free local resources 
• Message is popped from the queue when either TDestroyor BroadcastResponse arrives

• Control logic
• Responsible for both inter and intra node communication and updating the messages inside 
a scheduler

Roberto Giorgi – giorgi@unisi.it  --- http://teraflux.eu



V ThID Offset DATAV M ThID Fptr

Map table Store buffer

• Map table (V – Valid, M – Mapped, ThID – thread ID, Fptr – Frame pointer)
• Keeps track of the issued resource requests for the execution of new threads
• a ThID is assigned to a thread when new Tschedule instruction occurs; it is used just inside that core
• a Fptr is assigned when a TScheduleResponse message arrives; it is unique globally in the system
• Can be cleared on the thread completion

• Store buffer (V – valid, ThID – thread ID, offset – for storing in a frame, DATA – data to store)
• Keeps track of the TStores issued for the threads that didn’t receive a TScheduleResponse yet (those kept 
in Map table and still not mapped)
• On each TStore for the new thread that still doesn’t have resources assigned, a new entry is created
• When TScheduleResponse arrives, all entries are checked and TStore messages are sent (entry 
invalidated) if there is any matching
• If TStore occurs for a thread that already has its resources assigned, there is no need to use the buffer

Non-blocking resource assignment - structure
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TERAFLUX

Distributed Thread Scheduler Unit

• On new 
TScheduleRequestMessage
checks the availability in 
local node
– If yes – forwards it

– If no – put the message in 
FRQ and send broadcast

• Message is removed from 
FRQ when FfreeMessage or 
BroadcastResponse arrive

• Other messages are just 
forwarded

TSCHEDULE

TSCHEDULE

TSCHEDULE

TSCHEDULE

TSCHEDULE

TSCHEDULE
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TERAFLUX

Local Thread Scheduling Unit

• On TScheduleRequestMessage

– Choose a free frame for execution of 

the new thread

– Send TScheduleResponseMessage to 

the issuing processor

• On TScheduleResponseMessage 

simply update the continuation with 

the frame identifier

• On store send DataStore message 

(group them if the destination is the 

same)

TSCHEDULE TSCHEDULE

TSCHEDULE

TSCHEDULE

TSCHEDULE
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TERAFLUX

Non-blocking resource assignment (1)

• Avoid waiting from the distributed scheduler by introducing Virtual frame pointers 
• Two additional structures – map table and store buffer

Even if we don’t speed-up the starting time of new threads,  execution time is shorter and processor becomes 
free earlier 
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TERAFLUX

One Physical Machine running two Virtual Machine instances that communicate 

through the Virtual Network (Mediator).

ADVANTAGES

This setup can run both on a real machines (at least at small 

scale for tests) AND on the COTSon simulator

It allows us to modify system parameters like e.g. number of 

cores in each simulated instance.

It allows for a parallelization of the simulation (the several 

instances are running in parallel on the available cores – load 

balancing automatically provided by the Host OS scheduler).

Possible to avoid copying buffers among instances because 

they reside in the Host Shared Memory Network 

Possibility to take advantage of RVI/VT-x virtualization 

mechanisms across different Physical Machines (under 

development).

The communication and synchronization among the 

simulation instances adds up to the Application traffic, but 

could bypass TCP/IP and avoid using the Physical 

Interconnection Network.

No need to use the Physical Network.

2010-09-

13

57

APP + MPI

OS Guest

CPU (1 or more cores)

APP + MPI

OS  Guest

HDD ImageVirtual 

Interconnection

NETWORK

SIMNow

OS  Host

COTSon SIMNowCOTSon

DISADVANTAGES

• Taking into account that we aim to flexibly change the 

programming model and architecture (e.g. the 

dataflow based execution model and architecture), 

this setup may end up in poor performance when N 

(number of nodes) increases.

• Tightens the Application to the Machine, which is 

exactly the opposite direction that we follow globally 

in TERAFLUX: we aim to decouple the Application 

(WP2) from the Machine with appropriate 

Programming Models (WP3), Compilation Tools (WP4) 

and Execution Models (WP6).

• The MPI run-time is constantly involved to 

appropriately schedule the ready tasks/threads on the 

available nodes.

• The Physical architecture that is more natural to model 

is a Distributed Machine not like the general one we 

aim in TERAFLUX.
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TERAFLUX

VM instances governed by a Single Source Image (SSI) OS

DISADVANTAGES

This setup requires the use of a Distributed OS as Guest 

OS (like e.g., Kerrighed [KERRIGHED10], which offers the 

view of a unique SMP machine on top of a cluster) or in 

general a SSI (Single System Image) OS.

Relatively poor performance when N (number of nodes) 

increases;

Partially tightens the Application to the Machine, which is 

in the opposite direction in respect to what we follow 

globally in TERAFLUX: we aim to decouple the Application 

(WP2) from the Machine with appropriate Programming 

Models (WP3), Compilation Tools (WP4) and Execution 

Models (WP6).

The underlying Guest Architecture is a “cluster”, which is 

then more naturally mapped to a physical Distributed 

Machine not a generic one like we aim in TERAFLUX.

2010-09-

13

58

APPLICATION

OS Guest

CPU (1 or more cores)

SIMNow (0)

OS  Host

SIMNow

(999)
COTSon…SIMNow (1) 

ADVANTAGES

• Allows us to run Shared Memory applications like OpenMP 

ones (can still run MPI as if it was a single big node).

• Can run both on a real machines (at least at small scale for 

tests) and on the COTSon simulator.

• It allows us to modify system parameters like e.g. number 

of cores in each simulated instance.

• It allows for a parallelization of the simulation (the several 

instances are running in parallel on the available cores –

load balancing automatically provided by the Host OS 

scheduler).

• Possible to avoid copying buffers among instances because 

they reside in the Host Shared Memory Network

• Possibility to take advantage of RVI/VT-x virtualization 

mechanisms across different Physical Machines (under 

development).

• The communication and synchronization among the 

simulation instances adds up to the Application traffic, but 

could bypass TCP/IP and avoid using the Physical 

Interconnection Network.

• Load Balancing for the Application is managed by the Guest 

OS

• No need to use the Physical Network.
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TERAFLUX

One core aware of all the other cores

2010-09-13
59

DISADVANTAGES

• Relatively poor performance when N (number of nodes) 

increases; however, as other simulator like COREMU 

[Wang11] already demonstrated a high speed up in 

simulations even with 255 cores, we have good confidence 

that we can improve much the simulation speed going in a 

similar direction.

• Requires some patches to the Linux OS; however we shall 

need to patch anyway the Memory Manager and the 

Scheduler in order to properly support the TERAFLUX threads

ADVANTAGES

• Allows us to run Shared Memory applications like OpenMP ones 

(can still run MPI as if it was a single big node).

• Can run both on a real machines (at least at small scale for tests) 

AND on the COTSon simulator as provided at the Month-1 of the 

TERAFLUX project.

• It allows us to modify system parameters like e.g. number of cores 

in each simulated instance.

• It allows for a parallelization of the simulation (the several 

instances are running in parallel on the available cores – load 

balancing automatically provided by the Host OS scheduler).

• Possible to avoid copying buffers among instances because they 

reside in the Host Shared Memory Network.

• Possibility to take advantage of RVI/VT-x virtualization mechanisms 

across different Physical Machines (under development).

• The communication and synchronization among the simulation 

instances adds up to the Application traffic, but could bypass 

TCP/IP and avoid using the Physical Interconnection Network.

• Load Balancing for the Application is managed by the Guest OS

• No need to use the Physical Network.

• No need to use a very different OS like an SSI OS.

• The underlying Guest Architecture is a shared memory machine, 

however thanks to the availability of a global address space, there 

is now full possibility of evolving the machine in a more “general 

one” like the one we aim to evolve during the TERAFLUX project. 

The TERAFLUX Execution Model can decouple completely the 

architecture of the machine.
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TERAFLUX

NAS benchmarks running in COTSon
• Machine 37nodes of 4 cores. One node Master and 36 Slaves
• Two examples from the set:

Time in secondsMop/s total     Mop/s/process

BT 1-4 398.93 421.84 11.72

BT 2-4 422.08 398.7 11.08

BT 4-4 398.17 422.65 11.74

NAS Parallel Benchmarks 3.3 – CG
Size:      14000
Iterations:    15
Number of active processes:    32
Number of nonzeroes per row:       11
Eigenvalue shift: .200E+02

CG 1-4 46.26 32.35 1.01

CG 2-4 48.45 30.89 0.97

CG 4-4 46.65 32.08 1

NAS Parallel Benchmarks 3.3 -- BT Benchmark 
No input file inputbt.data. Using compiled default
Class A: Size:   64x  64x 64 
Iterations:  200    dt:   0.0008000
Number of active processes:    36
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NAS Parallel Benchmarks 3.3 -- EP Benchmark
Number of random numbers generated:       536870912
Number of active processes:                      32
EP Benchmark Results: CPU Time =    5.5777, N = 2^   28
____________________________________
NAS Parallel Benchmarks 3.3 -- FT Benchmark
No input file inputft.data. Using compiled defaults
Size                :  256x 256x 128 (Class A)
Iterations          :              6,  Number of processes :       32
Processor array     :         1x  32, Layout type         :      1D
_________________________________
NAS Parallel Benchmarks 3.3 -- IS Benchmark

Size:  8388608  (class A), Iterations:   10
Number of processes:     32, IS Benchmark Completed
Class           =      A, Size            =     8388608
Iterations      =           10
_____________________________________
NAS Parallel Benchmarks 3.3 -- LU Benchmark
Size:   64x  64x  64 (Class A),Iterations:  250
Number of processes:    32
______________________________
NAS Parallel Benchmarks 3.3 -- MG Benchmark
No input file. Using compiled defaults 
Size:  256x 256x 256  (class A)
Iterations:    4,  Number of processes:     32

Time in 
seconds

Mop/s
total     

Mop/s/
process   

410.53
EP 1-4 4.9301 108.9 3.4
EP 2-4 5.5777 96.25 3.01
EP 4-4 4.9324 108.85 3.4
FT 1 -4 187.25 38.11 1.19
FT 2 -4 185.43 38.49 1.2
FT 4 -4 201.85 35.36 1.1
IS 1-4 2.59 32.39 1.01
IS 2 -4 2.67 31.45 0.98
IS 4 -4 2.57 32.64 1.02
LU 1-4 188.96 631.33 19.73
LU 2 -4 185.15 644.32 20.14
LU 4 -4 183.93 648.6 20.27
MG 1-4 171.15 22.74 0.71
MG 2 -4 176.11 22.1 0.69

NAS benchmarks running in COTSon
(cont.)
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TERAFLUX

Plurality

● Plurality: http://www.plurality.com/profile.html
– Architecture: general-purpose accelerator for 

multicore/manycore system-on-chip (SoC)

– Task-oriented programming model: the programmer  has to 
perform a partitioning of the program into specific tasks (task-
map)

– The body of each task is a traditional sequential code

– Each core is a RISC processor

– Scheduler, synchronization and load balancing among cores 
are done by a complex hardware subsystem that 
communicates with all the RISC processors

– Uniform shared memory access



TERAFLUX

CUDA

– Programming model: extensions to standard C 
language (CUDA libraries)

– DRAM memory addressing + on-chip shared 
memory

– However a single process must run spread 
across multiple disjoint memory spaces (???)

– Recursive functions are not supported (must be 
converted to loops)

– Bus bandwidth and latency between CPU and 
GPU may be a bottleneck (acceleratore esterno)



TERAFLUX

TFlux

● TFlux:

– Paralell processing system targeted to 
commodity, Linux-based shared-memory 
multiprocessor systems

– Data-Driven multi-threading

– Programming model: takes as input a C 
program, argumented with TFlux-specific 
compiler directives (#pragma's)

– Everything implemented in software



TERAFLUX

Subset Static Interleaved (SSI)

● Interleaved threads

– Advantage: operations latencies become shorter in 
terms of executed instructions from the same thread

● Combination of blocked multithreading and static 
interleaved multithreading:

– A set of background threads + a set of foreground 
threads. Foreground threads are interleaved until a stall 
occurs (e.g. cache miss). When a foreground thread 
stalls and a background thread is ready for execution we 
exchange them so that the foreground thread becomes 
a background thread and vice versa

● TSU: task scheduling unit (in hardware)


