Microsoft

TERAFLUX.EU TraLes

Exploiting Dataflow Parallelism
in Teradevice Computing

University of Siena

Barcelona : .
Supercomputing Center University of Augsburg

‘ 1 0\
CA PS Roberto Giorgi — University of Siena (coordinator) /@NV&’A

[I.ABshp] Cagliari, Italy — Computing Frontiers][C

16/05/2012 University of Cyprus

J FUNDING OPPORTUNITIES from the - MANCHFS;—];ER

3 ¥ FUTURE & EMERGING TECHNOLOGIES scheme

1 INRIA University of Manchester

What is TERAFLUX about

Architecture+Programmability+Reliability
of
Future (single chip)
Many-cores
(targeting 1000+ cores)

TERAFLUX

Future Scenarios
3D stacking, 8nm, 3D transistors, Graphene

G. Hendry, K. Bergman, “Hybrid
On-chip Data Networks”,
HotChips-22, Stanford, CA —
Aug. 2010

3-D Tri-Gate transistors form conducting channels on three sides
of a vertical fin structure, providing “fully depleted” operation
Transistors have now entered the third dimension!

TERAFLUX

Innovation-Enabled Technology Pipeline is Full

&5nm d5nm = nm FPrm 15nm nm

e
2005 2007 2008 2011° 2013 2015 2017° 2018+
MANUFACTLRING DEVELOPMENT -~ RESEARCH

Y

atky

F 3

Our limit to visibility. goes out ~10 years

INVESTOR MEE

0
2004 2006 2008 2010 2012 2014 2016
0.1 Failures per socket per year:

Pawloski, May 2011, Exascale Seminar, Ghent

Roberto Giorgi — giorgi@unisi.it --- http://teraflux.eu

Fundamental approach: DATAFLOW

A Scheme of Computation in which
an activity Is Initiated by presence of
the data it needs to perform Its
function

(Jack Dennis)

TERAFLUX

Recent Projects/Efforts towards
DATAFLOW

 Maxeler (UK) selling “dataflow HPC S
computer” to J.P. Morgan = E
about 350X Speedup VS. J.P. Morgan Deploys Maxeler Dataflow Supercomputer for Fixed

Income Trading
standard x86 cores

* DARPA funding 25MS for UPHC=Ubiquitus
. High-Perf C ti
UPHC program, encompassing; L— > mme -ompPrme

— @Gao’s dataflow execution model
(codelet based) — SWARM by ETI

— Intel’s Runnamede project
The Intel-lead UHPC team intends to develop new circuit topologies, new chip and system architectures, and new
programming techniques to reduce the amount of energy required per computation by between 100x and 1000x
compared to today's computing systems. Such dramatic reduction in energy consumption will allow these future
systems to take full advantage of the increasing transistor budgets afforded by the steady advances in Moore's Law.

TERAFLUX

Roberto Giorgi — giorgi@unisi.it --- http://teraflux.eu 5

TERAFLUX - Future Many-cores

Key Challenges: Architecture+Programmability+Reliability

AC=Auxiliary Core
SC=Service Core
|Ox=1/0 or SC Core

TERAFLUX Key Facts:

e FET - Integrated Project — 10
Partners —4 years —2010-2013

e 7.5 Meuro Total cost (5.7 Meuro

EU funded)
AC AC AC AC AC ACACAC
AC AC AC AC AC AC AC AC _—'
AC AC AC AC AC AC ACAC TERAFLUX-INCO Key Facts:
AC AC AC AC AC ACACAC . .
G G TG 10G I e G e o1 e FET - EU Worldwide Cooperation —
ACAC ACACAC ACACAC (dict) Extends TERAFLUX to an additional
AC AC AC AC AC ACACAC
B I I 05 USA partner for 21 months
AC AC AC AC AC ACACAC (Keyboard) e 546 Keuro Total cost (420 Keuro EU
AC AC AC AC AC ACACAC funded
AC AC AC AC AC AC AC AC 103)

AC AC AC AC AC ACACAC (NIC)

TERAFLUX

Roberto Giorgi — giorgi@unisi.it --- http://teraflux.eu

WP5
WP6

WP7

WP3/Programming

WP4 Compilation

Teradevice
hardware
(simulated)

Abstraction Layer
and Reliability Layer

Data
dependencies

8%

Source code
1]

Extract TLP
\ o
(¢ ‘ T
® ®
tA

Threads .

Transactional
memory

Locality optimizations

Virtual CPUs

possibly
1,000-10,000 cores...

—

PCPU

PCPU

PCPU

e:0) IPCPU| |PCPU

PCPU

Roberto Giorgi — giorgi@unisi.it --- http://teraflux.eu

TERAFLUX.EU

Working Hypothesis

1000 Billion- or 1 TERA-
device computing
platforms pose new

challenges:

— (at least)
programmability,
complexity of design,
reliability

TERAFLUX context:

— High performance
computing and
applications (not
necessarily embedded)

TERAFLUX scope:

— Exploiting a less
exploited path
(DATAFLOW) at each
level of abstraction

MEMORY

MEMORY

pave=sll TERAFLUX Architectural template

LEGENDA:
n = # of nodes
m = # of cores per node

Unified Physical Address Space
z = # of I/O Hubs

u= # of DRAM controllers insisting on the

Nk = k-th Node (k=1..n)
NI = Network Interface
NoC = Network on Chip

Cj=j-th core (j=1..m)

MC = Memory Controller

DTSU = Distributed Thread-Scheduler Unit
DFDU = Distributed Fault-Detection Unit
LLSH = Last Level Cache Hierarchy

Core level HW
support
(e.g. LTSU+LFDU)

PU

CLSH = Core Level Cache Hierarchy
PU = Processing Unit

LTSU = Local Thread-Scheduler Unit
LFDU = Local Fault-Detection Unit

Roberto Giorgi — giorgi@unisi.it --- http://teraflux.eu

CHIP LEVEL g oriien taven

CORE LEVEL

Our pillars

e FIXED and MOST-USED ISA (x86)

e MANYCORE FULL SYSTEM SIMULATOR (COTSon)
e REAL WORLD APPLICATIONS (e.g. GROMACS)

e SYNCHRONIZATION: TRANSACTIONAL MEMORY
e GCC based TOOL-CHAIN

* OFF-THE-SHELF COMPONENTS FOR CORES, OS,
NOC,MEMORY HIERARCHY

e FDU AND TSU (Fault Detection Unit and Thread
Scheduling Unit)

TERAFLUX

Roberto Giorgi — giorgi@unisi.it --- http://teraflux.eu

A REVIEW OF RECENT MANY-CORES

TERAFLUX

HotChips 2011

 Hot Chips papers suggest that the rest of the
world is moving in a different direction: large
numbers of relatively simple CPUs. But the trend
is reinforcing a long-appreciated set of
guestions—as the number of cores grows, how
do you deal scalability with interconnect,
memory hierarchy, coherency, and intra-thread
synchronization? Answers to these questions
depend on the size of the design, the application
space, and the heritage of the design team.

TERAFLUX R_Wilson, EETimes, 24/8/2011

S

|_
O0OO

elelele}

5668

HeI® &
,

L] [E1] [[5G
[| | |
— L2 L2
e L2

5500

ole]jele

uu DDR | uU DDFiI|

5550

Figure 1. Schematic of the SARC architecture. The number of masters, workers, level2 (L2)

blocks, and memory interface controllers is implementation dependent, as is their on-chip layout.

SARC Architecture

Table 1. Baseline SARC simulation parameters.

Parameter Value

Clock frequency 3.2 GHz

Memory controllers 4 x 2 DDR3 channels

Chanrnel bandwidth 12.8 Gbytes per second (GBps)
(DDR3-1600)

Real DDR3-1600

Closed-page, in-order processing

Memory latency

Memory interface controllers
(MICs) policy

Shared L2 cache 128 Mbytes (32 blocks & 4 Mbytes),
4-way associative

L2 cache latency 40 cycles

Local store 256 Kbytes, 6 cycles

L0 cache 32 Kbytes, 3 cycles

Interconnection links 8 bytes/cycle (25.6 GBps)

Intracluster network on chip (NoC) 2-bus (51.2 GBps)

Global NeC 16-bus (402.6 GBps)

More recently (20110908),
Dimitris Nikoloupos
confirmed me that there
won’t be anymore the LS

as it will be integrated in
the L2.

SARC architecture, IEEE micro, Oct. 2010, vol. 30, n. 5, pp. 16-29

Th
TERAFLUX

Roberto Giorgi

— giorgi@unisi.it --- http://teraflux.eu

IBM BlueGene/Q

o el Eet? Bt 1. Rather than replicate more
DB Fo D ENE R than 18 of these large

! cores, IBM chose to give
each core hardware
support for four
concurrent threads, so
under ideal circumstances
the chip can behave almost
as a 64-CPU system

e

DR
i)

b Teh]

T EIE N ST

| il

e Ruud Haring, The.IBM Blue Gene/Q Compute chip+SIMD floating-point unit,
TERAFLLBI(otChlps Symposium, Aug 2011.

Roberto Giorgi — giorgi@unisi.it --- http://teraflux.eu

BlueGene/Q module and system

Elue Gene/Q packaging hierarchy 3% Campute £,
Ophical Modulss, Link Chips
Torus

3. Compute Card
O £ BORA amary
2. Modile ! e

Engia Chip

TN we |
. - /
Sk, WD Drawasar

210 Cards B Hack T. Sysism
&Pl Gend alaks 2 Midplanes 20PFle
1,2 ard D Draerers

fa. Midpl=ne
16 Made Cands

The BlueGene/Q module with DDR3 memory, five links and a water cooling system.

Thanks to the 64-bit support, the modules can now run 8 or 16 GB of DDR3 memory. Five
links (2 GB/s per direction) connect each module to its neighbors, making it possible to
create different 5D topologies. Half a rack with 8192 BlueGene/Q cores has already proven
its capabilities in the Linpack benchmark, With 65.3 Tflops, the test system from the Thomas
J. Watson Research Center scored 115th place in the new Top500 list. lts power
consumption of 38.8 kW represented a new record value for energy efficiency at close to
1700 Mflops/watt. The Sequoia is supposed to get 96 fully equipped racks, which are
suanS?_d to deliver 20 Pflops of theoretical peak performance at the end of 2012.

TERASHHX: — translation from the original article from German in c’t by Marcel Sieslack

Cavium — Octeon || CN6880

I_ _I Cavium relies primarily on
""""""" Eocascry e locks for synchronization,

2 = assisted by facilities in the
scheduler hardware

TERA@.W OCTEON Il CN6880 Multi-Core MIPS64 Processor, HotChips Symposium, Aug. 2011.
Roberto Giorgi — giorgi@unisi.it --- http://teraflux.eu

Octeon Il (2)

Dlaap Facksl
RAID e Inspachan
(HFA]

i Camprassson!
T Dhesnifiiraasinn

Soheduler,
: Synchronize,
| COrdar

'; R e e e Crypin Cryein
Socure Woult Srsurty Sncurty

T MIPSE4 R3 MIPSE4 R3

IE e |r'|hg¢r Cora ||'|t'ﬂ'ﬂEl Core
- ZEIN, BxAMNL I i 5 L
| E SGEMI, ! ST

i mbzriaken, OTEE ITK lcache
B : ard Pl 32K Beache

daem 2 MO s

i Fackal Ingidt

Pad:kal Quilput

I3 Bricgecs Shared
S : L2 Cache

i

TERAFLUX

Roberto Giorgi — giorgi@unisi.it --- http://teraflux.eu

Godson-T

Processing Core

i
=

wlwl e

slalaialialwl &l
alalulalalwlal
wlalulalalalal

al

slalalalal«l =l
alslulslalwlely
ulslalalalalals

slalalal

Fig.1. Overview of Godson-T.

Cui HM, Wang L, Fang DR et al. Landing stencil code on Godson-T. JOURNAL OF COMPUTER SCIENCE
ANDTECHNOLOGY 25(4): 886—894 July 2010.

TERAFLUX

Roberto Giorgi — giorgi@unisi.it --- http://teraflux.eu

SPARC64™ VIlifx Chip Overview

@
E‘- |
2
2=
T
14
(]
(=

Architecture Features
» 8 cores
» Shared 5 MB L2%
- Embedded Memory Controller
« 2GHz

Fujitsu 45nm CMOS

« 22.7/mm X 22.6mm

« 760M transistors

« 1271 signal pins
Performance (peak)

« 128GFlops

+ 64GB/s memory throughput
Power

« 58W (TYP, 30°C)

« Water Cooling — Low leakage
power and High reliability

K-Computer

Compute nodes and Network

= (CPUS): > 80.000 E 6—dimensional mesh/torus network: Tofu

. .

OIS NOA8S o ' E 10 connections to each adjacent node
® Dumberyf ogras: - RaUAN B Peak bandwidth: 5GB/s x 2 for each

E Peak performance: > 10PFLOPS

connection
® Memory: > 1PB (16GB/node) B Logically 3-dimensional torus network

i Compute node

o . CPU: 12867LOPS
SPARCE4™ VIIfx {ECE'E:!I -

SGB/s(peak) x 2

§ . Iﬁ | I |I
i] 'J I'I
Courtesy of FUJITSU Ltd

Mitsuo Yokokawa, Fumiyoshi Shoji, Atsuya Uno, Motoyoshi Kurokawa, and Tadashi Watanabe. 2011. The K computer: Japanese next-generation
SLIJEJercomputer development project. InProceedings of the 17th IEEE/ACM international symposium on Low-power electronics and design (ISLPED '11).

TERA"LUX

Roberto Giorgi — giorgi@unisi.it --- http://teraflux.eu

K-Computer (2)

Packaging of the system

v A rack consists of 24 system boards, 6 10 boards, power supply units, system
; . 3
storages, and diagnostic processors, %

e TUGmm — "
¥ A hose pipe is connected to the water loop under the floor. P &

System Board

wupgng

LSI for
nterconnect

gt ® 8

S. Fumiyoshi, The K Computer: Project Overview

TERAFLUX

Roberto Giorgi — giorgi@unisi.it --- http://teraflux.eu

IBM Cyclops-64

5 Proceszar J 5 s Processor 1l 5 5 Processar 2 5 s Proceszar 759 5

R R E R R R E R

f A & A & A & A

Ly M Y M Y M kS M

FFU FFU / FFU FFU \
TV D TU1 TUQ U1 TUQ U1 TU B TU1
PG / \\ WG WFG MIFG /
[| | |
[| | |
5& Part Crasshar

C Glus= T Glus I Glus IC Gl o o o o
| | [| | I | | [1 | [1 | C o o o
A B F R A Cl
1] I 1] 1 N - - 2 z 2 2
clelelelleslelc]e clelclellele]lce]c s s _ _
L L [c C c

Haost interface
11|21 1|11]1 1|2 |1]2 1|1 |1]z2 n n n n
o|la|o|a ec|la|le|a aleo|le]|a 3 |le|a]a £ t £ t t :
iC i r r r r
Sl o S S S I N A I O h h I I I
vluw|lw|w vlw|w|u ulu|uwlu ulw|lulu . . 5 5

Figure 1: IBM Cyclops-64 (Cé4) Many-Core Architecture: The architecture consists of 80 processors (Proces-

sor 0 -79). Each processor has two Thread Units (TUs) called TU 0 and TU 1. Both share one Floating-Point
Unit (FPU) and one crossbar port (MPG). Each TU is connected to a SRAM bank, which can be accessed
by all other TUs via the crossbar. Ten TUs share one Instruction Cache (IC). The system has four on-chip
DDR2 memory controllers to access off-chip memory. The A-Switch is used to connect to the six surrounding
neighbors in a 31-mesh network.

reRafus

utzka, Yuhei Hayashi, Joseph B. Manzano, and Guang R. Gao. 2011. The elephant and the mice: the role of non-strict fine-grain synchronization

many-core architectures. In Proceedings of the international conference on Supercomputing (ICS '11). ACM, New York, NY, USA, 338-347.

TERAFLUX RESEARCH OVERVIEW

TERAFLUX

WP2 - APPLICATIONS

° MPI a pp lications Overall memory bandwidth projections

256
128 F
64 |

-— eeam e ol e s e

e Measures with executions
with 16, 32, 64, 128 procs.

* Linear regression projections
e Off-chip Memory Bandwidth

— 1K cores will need more than
256GB/s sustained bandwidth

— 3x than current DDR3

e Total memory footprint for MPI applications
— Total memory footprint increases with the number of processors

(5}
3]

(=)

BGADGET
BMILC
BWRF
OSOCORRO J

32 64 128 256 512 1024 2048

Number of processors

L e B
] '

— N B

Estimated total bandwidth [GB/s]
oo
o]
>

— Manycores with more than 100 cores will require a few
dozens GBs of main memory

e Alternative programming models are required to deal with memory
requirements for scalability

M. Pavlovic, et al. “On the Memory System Requirements of Scientific Applications:
Four Case Studies”, In IEEE Intl. Symp. On Workload Characterization (ISWC), Nov 2011.

Roberto Giorgi — giorgi@unisi.it --- http://teraflux.eu

TERAFLUX

WP3 — PROGRAMMING MODEL

Transactions and Dataflow additions to Scala

— Modified to the Scala compiler to include transactional
constructs — surveyed other possibilities using closures

— Runtime STM support
— Statically Typed Dataflow Library

— Reimplementation of the Scala parallel collection using
dataflow plus transactions

— Analysis for Lee-TM of benefits of Dataflow plus transactions

http://apt.cs.man.ac.uk/projects/TERAFLUX/MUTS/

Daniel Goodman, Behram Khan, Salman Khan, Chris Kirkham, Mikel Lujan and lan Watson.
MUTS: Native Scala Constructs for Software Transactional Memory. In: Scala Days Workshop,
Stanford, California, June 2-3, 2011.

TERAFLUX

WP4 — COMPILATION TOOLS
Compilation for Dataflow Threads
Automatic DF Thread Extraction

Feng Li, Antoniu Pop, and Albert Cohen. Extending loop distribution
to ps-dswp. In: 1st Workshop on Intermediate Representations
(WIR'11, associated with CGO), Chamonix, France, April 2011.

a.c,b.c
C source files " >
4 . Code target wntime
or ——|Compiler | B9% i s flow | ——>| library
InF"Ut (GGG middla end) Generation with data flow targeﬂ basedon ¥
Textract-df-thread builtin functions OpenMp task
a.c,b.c
C source files control dependence «
with annotation scalar dependence l
dependence
Expressiveness T
. _ TEST on
v implemented Comp1 ler|— s.|pata flow
@ to implement (GCC backend) | target2 |architecture
-mdta v asm files

TERAFLUX o
Roberto Giorgi — giorgi@unisi.it --- http://teraflux.eu

25

WPS5 - RELIABILITY

e DOUBLE EXECUTION detects control flow AND data errors

e Runs each thread twice, once
as a leading thread t and N O, [
second time as a trailing thread ¢/ |~ |-~ N el
* The duplicated threads can run on ™ f-—————-———- Compare Y7
the same core or on different cores IP™ - _______ [Rollback] "]

of the same node/cluster
e Each execution generates signature of output results

e At completion compare the two signatures, if consistent,
the D-TSU writes its results to subsequent thread frames

° |f N Ot, NO cOomm |t me nt Sebastian .Weils, Arne Garbade, Julian Wolf, Bernhard Fechner, Avi Mendelson,
Roberto Giorgi, and Theo Ungerer. A Fault Detection and Recovery
an d recove ry Architecture for a Teradevice Dataflow System. In Data-Flow Execution Models

for Extreme Scale Computing (DFM) 2011 Workshop Proceedings. IEEE

TERAFLUX Computer Society, 2011

.c (sequential)

WP6 - ARCHITECTURE

.x86 assembly (parallel)

void main() {
inta=4;
intb=4;
int add, mul, c;

add=a+b;
mul=a * b;
c = mul/add;

}

/ FP1. main

\

FP2=tschedule(add, 3)

twrite(FP2| 2,af
twrite(FP2|4,b)

'

FP2. add

TERAFLUX

\
a=tread(FP2|2)
b=tread(FP2|4)

twrite(FP4]2,a+b)

FP3=tschedule(mul,3)

twrite(FP3 |2,a)
twrite(FP3|4,b)

y

FP3. mul

a=tread(FP2|2)
b=tread(FP2|4)
twrite(FP4|4,a*b)

FP4=tcschedule(div, 2)

Node: Frame ID. Thread Name

Frame Allocation Instruction

Other Instructions

FP4. div
I
add=tread(FP 4 |2)
mul=tread(FP 4 | 4)
¢ = mul/add
tdestroy

v

.x86 assembly (parallel)

TERAFLUX

Roberto Giorgi — giorgi@unisi.it --- http://teraflux.eu

28

T* (or T86) ISE: TSCHEDULE/TDESTROY

- T* INSTRUCTIONS IMPLIED COMPILER TARGET

no Sis TSCHEDULE RS1, RS2, RD TSCHEDULE(<IP>, <SC>, &<frame pointer>)

Descrlptlon This instruction allocates the resources (a DF-frame of size RS2 words and a corresponding
entry in the Distributed Thread Scheduler — or DTS) for a new DF-thread and returns its
Frame Pointer (FP) in RD. RS1 specifies the Instruction Pointer (IP) of the first instruction of
the code of this DF-thread and RS2 specifies the Synchronization Count (SC). Finally the
zero flag is logically negated.

The allocated DF-thread is not executed until its SC reaches 0. The TSCHEDULE can be
conditional or non-conditional based on the value stored in the zero flag. If the zero flag is
set to 1 then the TSCHEDULE will take effect, otherwise it is ignored. Two subsequent
TSCHEDULE implement an if-then-else.

Synopsis TDESTROY TDESTROY

b= d s The thread that invokes TDESTROY finishes and its DF-frame is freed, (the corresponding
entry in the Thread Scheduling Unit is also freed).

TERA tFT. tero, Zhibin Yu, Roberto Giorgi, "T-Star (T*): An x86-64 ISA Extension to support thread execution on many
cores”, HIPEAC ACACES-2011, ISBN:978 90 382 17987, Fiuggi, Italy, July 2011, pp. 277-280.

T* (or T86) ISE: TWRITE/TREAD

T* INSTRUCTIONS IMPLIED COMPILER TARGET

Synopsis TWRITE RS, RD, offset *(<frame pointer> + <offset>) = (<source register>)

b= i) The data in RS is stored into the DF-frame pointed to by RD at the specified offset.

Side Effect: The Distributed Thread Scheduler decrements the SC of the corresponding DF-
thread entry (located through the FP): SC.p, = SCep-1

Synopsis TREAD offset, RD (<destination register>) = *(<self frame pointer> +
<offset>)

b= d0adle] = Loads the data indexed by 'offset' from the self (current thread) DF-frame into RD.

Assumption: the DTS has to load into the register implicitly used by TREAD the value
<self frame_pointer>. In a x86-64 implementation, we can reserve RAX for this purpose.

TERAFLUX

Roberto Giorgi — giorgi@unisi.it --- http://teraflux.eu

T* (or T86) ISE: TALLOC/TFREE

- T* INSTRUCTIONS IMPLIED COMPILER TARGET

Synopsis TALLOC RS1, RS2, RD <pointer> = TALLOC (<size>, <type>)

e i) Allocates a block of memory of RS1 words. The pointer to it is stored in RD. RS2 specifies
the special purpose memory type.

The Distributed Thread Scheduler tracks the memory allocated. An implementation can
code <type> in the 2 LSB of <size>

Synopsis TFREE (RS) TFREE(<pointer>)

b= il Frees memory pointed to by RS.

The Thread Scheduling Unit tracks the memory deallocated.

TERAFLUX

Roberto Giorgi — giorgi@unisi.it --- http://teraflux.eu

DTS — Distributed Thread Scheduler

(formerly called TSU)

"M LTSUL1

of cores=nxm n=#of nodes m =# of cores per node

TERAFLUX

Roberto Giorgi — giorgi@unisi.it --- http://teraflux.eu

32

Distributed Thread Scheduler
A 2-node x 4-core example

e Core (Cjk)

— Off-the-shelf cores (may include L1,
L2slice)

— Minimal ISA extension

e Local Thread Scheduling Unit (LTSU)
— Manages threads on this Core

e Distributed Thread Scheduling Unit
(DTSU)

— Distributes threads among Nodes

* Node
— Groups Cores+Resources

Roberto Giorgi — giorgi@unisi.it --- http://teraflux.eu 33

Scheduling Example

e |TSU11 - DTSU1:
— | need a new frame

e DTSU1 - LTSU13:
— You’re available, give one frame to LTSU11

e [|TSU13 - LTSU11:
— Here is a frame you can use

Fast communication = low overhead
What if every PE in the cluster is busy?

e |TSU14 - DTSU1:
— “I need a new frame”
e DTSU1 - DTSU2:
— LSE14 needs a frame, | don’t have it
e DTSU2 - LTSU22:
— Give a frame to LSE14
— LTSU22 - LTSU14:

— Here is a frame you can use
Roberto Giorgi — giorgi@unisi.it --- http://teraflux.eu

34

Fine-Grain Thread Schedulmg

Plurality CUDA TFlux DTA

HW/SW HW + SW HW + SW SW HW

Prog. Model Custom C Custom C Custom C Standard thread-Standard thread-
language language preprocessor |oriented C oriented C
extensions extensions macros libraries libraries

(#pragma) (pthreads) (pthreads)

Exec. Model - Pool of RISC |- Each thread |High-level Subset static - Decoupling
processors block is split into|threads are interleaved memory and
- Uniform sharedwarps (thread |mapped to OS scheduling of |execution activity
memory block. threads, using théine-grained / |of non-blocking
- Hardware - Each thread |standard OS coarse-grained |threads.
scheduler , block is executedprogramming |threads - Threads are
synchronizer andby only one interfaces as performed by a |synchronized anc
load balancer |multiprocessor. backend. hardware Task |communicate

- A multi- Scheduling Unit |each other in a
processor can (TSV) producer-
execute several consumer
blocks fashion.
concurrently.

Architecture Complex SIMD, on-chip |Everythingis |Hardware Thread
hardware shared memory |implemented in |scheduler (TSU) management an
subsystem: software: can rumt+ extensions to &rame memory
synchronizer, on any general |VLIW prototype management
scheduler, load purpose implemented in
balancer architecture hardware

TER

SSIFSubset Static Interleaved

DTA=Decoupled Threaded Architecture

of threads

80000

70000

60000

50000

40000

30000

20000

10000

fib(21): number of threads

A
A A
) \
S 3
A i preload
& @ exec
A 3 V poststore
A A .
re X A wait_table
A > »> total
A“ V‘7V7V<7§7V \
vvyv YV vVVVy
Vvvvv VYVVVy
vV vy VYV YV V 37 3
o N N N o o N S
S S S S S S S S
&> S S S Sk Sk S S
O R S AR
clock cycle

Roberto Giorgi — giorgi@unisi.it --- http://teraflux.eu 36

WP7: Evaluating a MANY-CORE chip of the future

Simulator
“illusion”
(SW should
only assume
what seen at
this level)

Simulator
infrastructure

TERAFLUX

(2020), i.e., 1000+ cores on a chip

TFX APPS LEGACY APPS
(e.g. GROMACS) (e.g. ORACLE DB)

LINUX +
TFX scheduler patch
DF-threads L-/S-threads
(x86-64 ISA___& NEW_MemoryviModel)

X86-64 ISA X86-64 ISA X86-64 ISA X86-64 ISA

scheduling

TERAFLUX

creating
: creating
: creating
: creating
: ecreating
: creating
: creating

creating

allucate
: creating
ating

creating
creating
creating
creating
creating

AMD SIMnow and COTSon

device #4 "AMD-8111 1-0 Hub"
device #5 "Memory Device™

device #6 '"Winbond WB3627HF SIO"
device #7 "SMB Hub Device"
device #8 "PCI Bus"

device "Debugger"

device #18 "AweSim Processor"
device #11 “AweSim Processor"
device #12 “AMD-8132 PCI-K Controller
device #13 “AMD-8151 AGP Tunnel"
device #14 "PCI Bus"

device #15 “"PCI Bus"

device #16 "Emerald Graphics"
map menory

device ﬂi? "PCA9548 Device"
device #18 “AT24C Device"

device u19 "AweSim Processe
device ’ CESSO
device Processo
device Processor'
device #23 "AweSim Processor"
device #24 "AweSim Processor"
device #25 "Intel(R> Pro-1888 MI-PT If

BSD Load completed?

;ﬂ Drag Icons to insert new devices

["] Show Deprecated Devices

X AMD 8th Generation Integrated Morthbridge
AMD-21111/0 Hub

ek AMD-8131 PCI-X Controller

AMD-8132 PCI-X Controller

AMD-8151 AGP Turinel

W AT24C Device

@Aﬂ Radeon HD 3870

ATI ATI RD790/RD780/RX780 Host Bridge Tunnel &
V| | AT-RS 780/R5880 Host Biidge Turrl

%) | ATI-SBE0D 1/0 Hub

%) | ATI-SB700 1/0 Hub

%) | ATI-SBB00 1/0 Hub

we Sim Processor

@ Debugger

' Deerhound RevB QuadCore Socket L1 o
AMD

& Dimm Bark:

! Emerald Graphics

| Intel(R) Pro/1000 MT/PT Desktop Network Adapte

ki =
=m ITEITE712 510

o LTC4306 Device

| Matrox(R) MGA-Géx(Graphics Adapter +

|dnm+n. sl DoasD Pl amA e ol 11

Shift+drag to add connections

Sim

im

3im

Sim Processor

Sim

D &h Qeneratid

ntegrated Morthbridge ¥
Processor #7

e Sim Processor #12

eneration]|
Morthbridg
3 AweSim Processor #4

#ith Jeneration
egrated Morthbridge
52

Processor #1

S
AMD-8151 AGP TurngiMB Hub

B
evice H39 An-2132 PO
Controller #42

PCl Bus #45

e L__J\u\m’\r“s?llrmnuu—u(«<a ...M-.Nn ik AT mae

Roberto Giorgi — giorgi@unisi.it --- http://teraflux.eu

rCentmeI VxD: ApVxdWin.exe - Unable

38

COTSon Overview

Time Synchronization, Simulation Parallelization,
Network Instrumentation, Network Statistics, ...

S

Trace Collection,

Profiling, Hooks, ... a3 it X

Timing
Sampling driver Model
1,2...,n

Sampling,
Interleaving, ...

CPU,

Memory,
Interconnects
Timing-Models

Timing Simulation

TERAFLU.:

Roberto Giorgi — giorgi@unisi.it --- http://teraflux.eu

39

The ambition of TERAFLUX is however
to be able of changing such machine in a flexible way,
while tackling research challenges on programmability,
architectural design and reliability.
Therefore, we have the need to stress the COTSon platform,
in order to being able to simulate 1000 cores.

TERAFLUX

Comparison among different approaches for doing research related to 1000-core
computing system (Information revised from data of the RAMP project)

x86-64 ISA
Modifiable

TERAFLUX

Performance (clock)

F(€40M)
D (120 kw, 12
racks)

D
B
D
A+
B

A (2GHz)

Roberto Giorgi —

C
D (120 kw, 12
racks)
C
D
C
A+
B
A(3GHz)

A+

giorgi@unisi.it ---

B(€0.1-0.2M)
A (1.5 kw, 0.3
racks)

A+
A+
A+
B+/A-

C
C (0.1 GHz)

B+/A-

A+ (€0.01M)
A+ (0.1 kw,
0.1racks)
A+
A+
A+
F/D
A+

B(= 0.9 of original)

A+

http://teraflux.eu

—“mmm

Scalability
(1K cores)

Cost (1K cores)

Power/Space (Kw, racks)

A+(€0.01M)
A+ (0.1 kw, 0.1
racks)

A+
A+
A+
C
A+

C(1/10 to 1/1000
SMP)

A+

FUNCTIONAL/TIMING SIMULATION

Timing and Functional .
e Ulator Integrated (SimOS)
- Complex, no reuse, very slow
Timing —#{ Functional Timing-Directed (Exec-driven)
Simulator e Simulator + Timing feedback
. . - Tight Coupling
»Complete '_I'|m|ng *No Timing _ _ Very slow
*No? Function »Complete Function n
®
Timng —» Functional Timing-First (Multifacet)]
Simulator |« Simulator + Timing feedback
+ Using existing simulators
=Complete Timing =No Timing + Software development advantages
=Partial Function =»Complete Function - Slow
Functional Timing Functional-First (Trace-driven)
Simulator Simulator +Fast

: S - No timing feedback
=Complete Function =Partial Timing 9

Source: Multifacet Project (www.cs.wisc.edu/multifacet) -

[Mauer02-sigmetrics-Full _System Timing_First Simulation]
Roberto Giorgi — giorgi@unisi.it --- http://teraflux.eu

TERAFLUX

COTSon: FUNCTIONAL-DIRECTED

e A variant of “functional first”

« Adds timing feedback at coarse granularity
(100s — 1000s of instructions)

e Applications see an approximation of time

« May miss some fine-grain timing interaction

e Compatible with fast (caching) emulators and samplers

Dl Events (instructions, ')
function BEaeilelel Timing tMemCS::I
' : ime an
S End Simulator Time feedbock Simulator cower
ottware (predicted IPC)
TERAFLUX

Roberto Giorgi — giorgi@unisi.it --- http://teraflux.eu

OTHER RECENT X64 SIMULATORS
—mmm

Timing-directed/integrated

Func-directed X X X X
User-level X X X X X
Full-system X X X
Archs Supported x64 x64 x64 x64 x64
Alpha
SPARC
Parallel (in-node) X X Multi-node
Shared caches X X X X

Heirman120401-ISPASS Tutorial
The SNIPER multi-core simulator

TERAFLUX

Roberto Giorgi — giorgi@unisi.it --- http://teraflux.eu

Simulation booting up 1024 cores. (1) COTSon execution of 32 SimNow instances.

(2) Each instance manages 32 cores. Host: 48 cores, 256 GB memory

|etah in (~/cotson-0.9.0/src/examples.toni.2) - gedit

EIEE

porte %20 ~ ktop)
File Edit View Search Terminal Help
Cpu(s): 64.8%us, 4.4%sy, 0.0%ni, 30.7%id, 0.1%wa
Mem: 264677636k total, 98054556k used, 166623880k free,
Swap: 67108860k total, 0k used, 67108860k free,
1 VIRT = S M TIMI
10499 portero 20 0 9802m 2.6g 22m R 101 1.0 @:40.
18523 portero 20 0 98e2m 2.6g 22m R 101 1.0 @:39.
16535 portero 20 @ 9797m 2.6g 22m R 101 1.0 @:39.
16546 portero 20 0 9804m 2.6g 22m R 101 1.8 @:39.
18559 portero 20 0 9797m 2.6g 22m R 181 1.8 @:39.
16572 portero 20 0 9797m 2.6g 22m R 11 1.0 @:39.
16586 portero 20 0 9797m 2.6g 22m R 101 1.8 @:38.
16625 portero 20 ©9797m 2.6g 22m R 181 1.9 @:38.
18639 portero 20 0 9814m 2.6g 22m R 181 1.0 @:38.
10652 portero 20 ©9799m 2.6g 22m R 101 1.0 @:37.
10666 portera 20 0 9851m 2.6g 22m R 181 1.8 @:37.
16694 portero 20 0 9797m 2.6g 22m R 161 1.@ @:37.
18736 portero 20 0 9858m 2.6g 22m R 101 1.8 @:36.
10778 portero 20 @ 9835m 2.6g 22m R 11 1.0 @:35.
16804 portero 20 ©9797m 2.6g 22m R 181 1.9 @:35.
18820 portero 20 0 9841m 2.6g 2Z2m R 101 1.8 @:35.
10834 portero 20 0 9836m 2.6g 22m R 101 1.0 @:35.
16847 portero 20 0 9797m 2.6g 22m R 181 1.8 0@:34.
16878 portero 20 @ 9856m 2.6g 22m R 101 1.8 @:34.
16891 portero 20 0 9848m 2.6g 22m R 101 1.0 0:34.
10487 portero 20 0 9832m 2.6g 22m R 11 1.0 0:40.
16511 portero 20 0 9804m 2.6g 22m R 101 1.8 @:39.
10599 portero 20 @ 9846m 2.6g 22m R 181 1.9 @:38.
18612 portero 20 0 9797m 2.6g 22m R 181 1.0 @:38.
16680 portero 20 0 9799m 2.6g 22m R 181 1.8 @:37.
10721 portero 20 @ 9797m 2.6g 22m R 101 1.0 @:36.
18750 portero 20 @ 9805m 2.6g 22m R 161 1.8 @:36.
18763 portero 20 © 9812m 2.6g 22m R 101 1.0 ©:36.
18792 portero 20 0 9799m 2.6g 22m R 181 1.8 @:35.
10861 portero 20 0 9828m 2.6g 22m R 101 1.0 @:34.
18906 portero 20 0 9799m 2.6g 22m R 181 1.8 @:33.
10708 portero 20 0 9797m 2.6g 22m R 100 1.8 @:37.
3521 portero 20 0 128m 65m 8540 S 8 0.0 0:36.
3869 portero 20 @ 30lm 15m 1@m S 3 0.0 0:06.
3335 nx 206 8 111m 2428 816 S 2 0.0 0:08.
3989 portero 20 0O 20084 1968 944 R 2 8.0 0:03.
8615 portero 20 0 60872 21m 1772 S 1 0.0 0:04.
11545 portero 20 0 26588 3800 1356 R 1 0.0 0:00.
2274 root 20 B0 11360 684 504 S 1 0.0 0:00.
2386 root 20 @ 135m 25m 4176 S 1 0.0 0:03.
16781 portero 20 B 24528 7908 2412 S 1 0.0 0:00.
585 root 20 8 <] e B s e 8.0 0:00.
586 root 20 @ a [}] 0s 0 0.0 0:00.
588 root 20 8 0] 6] es e 0.0 0:00.
594 root 20 8 2] e B s e 0.0 0:00.
596 root 20 @ 2] 2] es e 0.0 0:00.
597 root 20 0 <] 2] es e 0.0 0:00.
611 root 20 @8 2] [¢] e s 0 0.0 0:00.
3525 nx 20 @ 37012 2736 2256 S e 0.0 0:03.
10513 portero 20 B 24540 7956 2412 S e 0.0 0:00.
18525 portero 20 @ 24524 7904 2412 S e 0.0 0:00.
10537 portero 20 @ 24532 7912 2412 § e 0.0 0:00.
16562 portero 20 B 24524 7964 2412 S e 0.0 0:00.
16575 portero 20 @ 24276 7904 2412 S e 8.0 0:00.
portero@tfx2:~/Desktop$ ~C

0.6%hi,

400

E+
08
97
82
69
42
16
93
33
15
99
71
28
57
91
51
29
05
84
34
11
31
61
68
49
41
77
35
14
74
57
86
04
27
94
11
43
95
03
52
88
36
30
56
26
41
9%
26
42
45
36
35
37
35
34

0.0%s1, 0.8%st
67144k buffers
832k cached

C
simnow
simnow
simnow
simnow
simnow
simnow
simnow
simnow
simnow
simnow
simnow
simnow
simnow
simnow
simnow
simnow
simnow
simnow
simnow
simnow
simnow
simnow
simnow
simnow
simnow
simnow
simnow
simnow
simnow
simnow
simnow
simnow
nxagent
gnome-terminal
sshd

top

cotson

status
irgbalance
Xorg

Xvnc4
kondemand/1
kondemand/2
kondemand/4
kondemand/10
kondemand/12
kondemand/13
kondemand/27
nxssh

Xvnc4d

Xvnc4

Xvnc4

Xvncd

Xvncéd

(]| executing vncviewer in background:

= portero@tfx2: ~/cotson-0.9.0/src/examples.toni.2

File Edit View Search Terminal Help
node 31

executing vncviewer in background:
executing vncviewer 1n backgruund:

vncviewer :67

vncviewer :68
vncviewer :69

uments
|

&

~) Undo

Help

exe(ut

St— |

File

VNC: 32nodes-2

[1] AMD SimNow Main Window -- Public Release

View Special Keyboard Help

\ |

[@uf=]e

Mumeric Display(s)

Simulator Skats

‘ 142.20 Host Secands

38.62 Sim Seconds

0.57 Awvg MIPS

0.00 MIPS

Reset fvg

~ IDE Prirmary Display-

0 master read

‘ 0 maskerwritten ‘

20,480 slave read
684,022 slave written

~ IDE Secondany Display:

0 master read

0 slave read
0 slave written

[PIG/PIS made

~ Diagnostic Ports

['o0 [o5 [0o [00 83 - 80

0 maskerwritten |E’E\E!E 87 -84

['oo [0 [0 |00 e3-en

why. toni |

.|VNC: 32nodes-2 [[

TERAFLUX

Note: the simulation is PARALLEL at GUEST NODE-LEVEL and it’s also possible
to distribute the simulation.on.seyeral HOST NODES

45

INITIAL EXPERIMENTAL RESULTS

The proposed simulation framework has
been validated running applications and
benchmarks on a target machine with up
to 1024 cores, operating in accordance
with dataflow principle on standard cores

We run several applications and
benchmarks based on well established
programming models (mainly OpenMP
and MPI):

e NAS Parallel Benchmark (NPB)
e Graph500 and HPL 2.0 Linpack
e Sequential Recursive Fibonacci

TERAFLUX

Roberto Giorgi — giorgi@unisi.it ---

64

32

time (ms)

05

0.25

n1728

N

=4=1ib{25) Exec. Timec {ms)

==1i{25) Exec.time with DF {ms)

fib(30) Exec. Timec (ms)

===fih(30] Exec.time with DF (ms)

number of cores

http://teraflux.eu

46

Major Technical Innovations in TERAFLUX

Fragmenting the Applications in Finer grained DF-threads:

— DF-threads allow an easy way to decouple memory accesses, therefore hiding
memory latencies, balancing the load, managing fault, temperature information
without fine grain intervention of the software.

* Possibility to repeat the execution of a DF-thread in case this thread happened
to be on a core later discovered as faulty

e Taking advantage of a “direct” dataflow communication of the data (through
what we call DF-frames).

* Synchronizing threads while taking advantage of native dataflow mechanism
(e.g. several threads can be synchronized at a barrier)

— DF-threads allow (atomic) Transactional semantics (DF meets TM)

e A Thread Scheduling Unit would allow fast thread switching and scheduling,
besides the OS scheduler; scalable and distributed

e A Fault Detection Unit works in conjunction with TSU

TERAFLUX

Roberto Giorgi — giorgi@unisi.it --- http://teraflux.eu

47

TERAFLUX SIMULATOR (COTSon)

http://cotson.sf.net

HP-Labs COTSon is OPEN-SOURCE

TERAFLUX

FUTURE AND SEVENTH FRAMEWORK
EMERGING PROGRAMME THEME
TECHNOLOGIES FET proactive 1 (ICT-2009.8.1)
PROJECT N. 249013 _ COOPERATION _Concurrent Tera-Device Computing

TERAFLUX

Exploiting dataflow parallelism in Teradevice Computing
PROJECT NUMBER: 249013

http://teraflux.eu

P

&8
» @«

BACKUP SLIDES

TERAFLUX

TERAFLUX TOOLCHAIN (Jan. 2011)

COMPILATION

TOOLS

TERAFLUX

Roberto Giorgi — giorgi@unisi.it --- http://teraflux.eu

Control logic

* FreeFrameTable (CID — Core ID, FFN — number of free frames)
» Keeps track of the occupancy of processors inside a cluster
» Updated on each TDestroy and accepted TSchedule
* TCRQ — ThreadScheduleRequestQueue
» Holds unserved ThreadScheduleRequest messages
» Message is pushed into queue when there are no free local resources
» Message is popped from the queue when either TDestroyor BroadcastResponse arrives
 Control logic
» Responsible for both inter and intra node communication and updating the messages inside
a scheduler

Roberto Giorgi — giorgi@unisi.it --- http://teraflux.eu

* Map table (V — Valid, M — Mapped, ThID — thread ID, Fptr — Frame pointer)
» Keeps track of the issued resource requests for the execution of new threads
* a ThiID is assigned to a thread when new Tschedule instruction occurs; it is used just inside that core
* a Fptr is assigned when a TScheduleResponse message arrives; it is unique globally in the system

» Can be cleared on the thread completion

» Store buffer (V — valid, ThID — thread ID, offset — for storing in a frame, DATA — data to store)
» Keeps track of the TStores issued for the threads that didn’t receive a TScheduleResponse yet (those kept

in Map table and still not mapped)
* On each TStore for the new thread that still doesn’t have resources assigned, a new entry is created

* When TScheduleResponse arrives, all entries are checked and TStore messages are sent (entry

invalidated) if there is any matching
* If TStore occurs for a thread that already has its resources assigned, there is no need to use the buffer

Roberto Giorgi — giorgi@unisi.it --- http://teraflux.eu

Distributed Thread Scheduler Unit

DISTRIBUTED SCHEDULER ELEMENT

On new
TScheduleRequestMessage
checks the availability in
local node

— |If yes — forwards it

— If no — put the message in
FRQ and send broadcast

Message is removed from
FRQ when FfreeMessage or
BroadcastResponse arrive

Other messages are just
forwarded

TERAFLUX

TSCHEDULE! @ gvailable
REQUEST |~
TSCHEDULE] B busy ERD,&DE,&%;[@
FEQLEL?' """ i i '
/push
hztaclustTSCHEDULE@a ERD.EDEE@I
otk [TEQEST | O o
{f{'empt o i {Temphy)
o Mrscrepuied)
eE (a) it REQUE
""" i
DATA : DATA
P | e REPONEE
TSCHEDULE TSCHEDULE
L - —— — — T | w-hlfd _________ P sleaars e i
RESPONGE RESPONGE

intaf cluster
network

Local Thread Scheduling Unit

e On TScheduleRequestMessage

— Choose a free frame for execution of
the new thread

— Send TScheduleResponseMessage to
the issuing processor

e On TScheduleResponseMessage

Dipaiines

simply update the continuation with
the frame identifier

e On store send DataStore message
(group them if the destination is the

same)

TERAFLUX

LOCALSCHEDULER
TSCHEDULH TSCHEDULE
o e o et P T REQUES!
LLGR:@_ ______ mgply | LAl @
; Qestimztinn YTORE :
TREE TREE
whaney fesfars TSCHEDULE
T " TEQUERL
@ ii‘Tﬂ_ wit fat S\ TSCHEDULE @
| 3 fhedas T remone
T .
L - DAl @
tTORE
wiits Dack frame nuhee TSCHEDULE
RESRONER

W Detwork

Non-blocking resource assignment (1)

» Avoid waiting from the distributed scheduler by introducing Virtual frame pointers
« Two additional structures — map table and store buffer

Thread cortinue Thread
immediateh
newy frame regquest new frame reguest
A = Seheduler
ff { . scheduler = l
_| [frame assigned =
= B o W ap Takle \
= & | 4-=—--=-
o N s 7] frame
S a3 Al o :
& waiting time / assighed
/
/
stores for
new thread
send data for new thread
Blocking frame assignment Hon-blocking frame assignment

Even if we don't speed-up the starting time of new threads, execution time is shorter and processor becomes
free earlier

TERAFLUX

Roberto Giorgi — giorgi@unisi.it --- http://teraflux.eu

One Physical Machine running two Virtual Machine instances that communicate
through the Virtual Network (Mediator).

Virtual HDD Image
NETWORK
This setup can run both on a real machines (at least at smal 0S Host
scale for tests) AND on the COTSon simulator
. . CPU (1 or more cores)
It allows us to modify system parameters like e.g. number o.
cores in each simulated instance.
It allows for a parallelization of the simulation (the several DISADVANTAGES
instances are running in parallel on the available cores —load ~ * Taking into account that we aim to flexibly change the
balancing automatically provided by the Host OS scheduler). programming model and architecture (e.g. the

dataflow based execution model and architecture),
this setup may end up in poor performance when N
(number of nodes) increases.

Possible to avoid copying buffers among instances because
they reside in the Host Shared Memory Network
Possibility to take advantage of RVI/VT-x virtualization
mechanisms across different Physical Machines (under
development).

. Tightens the Application to the Machine, which is
exactly the opposite direction that we follow globally
in TERAFLUX: we aim to decouple the Application

The communication and synchronization among the (WP2) from the Machine with appropriate
simulation instances adds up to the Application traffic, but Programming Models (WP3), Compilation Tools (WP4)
could bypass TCP/IP and avoid using the Physical and Execution Models (WP6).
Interconnection Network. . The MPI run-time is constantly involved to
No need to use the Physical Network. appropriately schedule the ready tasks/threads on the

available nodes.

. The Physical architecture that is more natural to model
is a Distributed Machine not like the general one we

TERAFLUX aim in TERAFLUX. 201-170_09_

Roberto Giorgi — giorgi@unisi.it --- http://teraflux.eu 13

VM instances governed by a Single Source Image (SSI) OS
AOYATIAGES

. Allows us to run Shared Memory applications like OpenMP

ones (can still run MPI as if it was a single big node).
e Can run both on a real machines (at least at small scale for
tests) and on the COTSon simulator L osHew

OS Host

. It allows us to modify system parameters like e.g. number
of cores in each simulated instance.

. It allows for a parallelization of the simulation (the several
instances are running in parallel on the available cores — DISADVANTAGES
:Z:i;j::rr;cmg automatically provided by the Host OS This setup requires the use of a Distributed OS as Guest

OS (like e.g., Kerrighed [KERRIGHED10], which offers the
view of a unique SMP machine on top of a cluster) or in
general a SSI (Single System Image) OS.

. Possible to avoid copying buffers among instances because
they reside in the Host Shared Memory Network

° Possibility to take advantage of RVI/VT-x virtualization Re|ative|y poor performance when N (number of nodes)
mechanisms across different Physical Machines (under increases;
development). Partially tightens the Application to the Machine, which is
* The communication and synchronization among the in the opposite direction in respect to what we follow
simulation instances adds up to the Application traffic, but globally in TERAFLUX: we aim to decouple the Application
could bypass TCP/IP and avoid using the Physical (WP2) from the Machine with appropriate Programming
Interconnection Network. Models (WP3), Compilation Tools (WP4) and Execution
* Load Balancing for the Application is managed by the Guest Models (WP6).
0sS The underlying Guest Architecture is a “cluster”, which is
. No need to use the Physical Network. then more naturally mapped to a physical Distributed
Machine not a generic one like we aim in TERAFLUX.
TERAFLUX 201-00-

Roberto Giorgi — giorgi@unisi.it --- http://teraflux.eu 13

ADVANTAGES

Allows us to run Shared Memory applications like OpenMP ones
(can still run MPI as if it was a single big node).

Can run both on a real machines (at least at small scale for tests)
AND on the COTSon simulator as provided at the Month-1 of the
TERAFLUX project.

It allows us to modify system parameters like e.g. number of cores
in each simulated instance.

It allows for a parallelization of the simulation (the several
instances are running in parallel on the available cores — load
balancing automatically provided by the Host OS scheduler).
Possible to avoid copying buffers among instances because they
reside in the Host Shared Memory Network.

Possibility to take advantage of RVI/VT-x virtualization mechanisms
across different Physical Machines (under development).

The communication and synchronization among the simulation
instances adds up to the Application traffic, but could bypass
TCP/IP and avoid using the Physical Interconnection Network.
Load Balancing for the Application is managed by the Guest OS
No need to use the Physical Network.

No need to use a very different OS like an SSI OS.

The underlying Guest Architecture is a shared memory machine,
however thanks to the availability of a global address space, there
is now full possibility of evolving the machine in a more “general
one” like the one we aim to evolve during the TERAFLUX project.
The TERAFLUX Execution Model can decouple completely the
architecture of the machine.

TERAFLUX

Roberto Giorgi — giorgi@unisi.it --- http://teraflux.eu

One core aware of all the other cores

APPLICATION

OS Guest

SIMNow (0)

SIMNow
(999)

SIMNow (1)

COTSon

OS Host

CPU (1 or more cores)

DISADVANTAGES

Relatively poor performance when N (number of nodes)
increases; however, as other simulator like COREMU
[Wangl1] already demonstrated a high speed up in
simulations even with 255 cores, we have good confidence
that we can improve much the simulation speed goingin a
similar direction.

Requires some patches to the Linux OS; however we shall
need to patch anyway the Memory Manager and the
Scheduler in order to properly support the TERAFLUX threads

59
2010-09-13

NAS benchmarks running in COTSon

e Machine 37nodes of 4 cores. One node Master argla3@s

e Two examples from the set:

NAS Parallel Benchmarks 3.3 -- BT Benchmark
No input file inputbt.data. Using compiled defaul

Class A: Size: 64x 64x 64

lterations: 200 dt;

Number of active processes:

NAS Parallel Benchmarks 3.3 - CG

TERAFLUX

Size: 14000
Iterations: 15
Number of active processes:

Number of nonzeroes per row:

Eigenvalue shift: .200E+02

0.0008000

BT 2-4
BT 4-4

CG 14
CG 2-4

11 cG4-4

tI'ime in seconddop/s tota Mop/s/process
BT 1-4

398.93 421.84 11.72
422.08 398.7 11.08
398.17 422.65 11.74
46.26 32.35 1.01
48.45 30.89 0.97
46.65 32.08 1

NAS benchmarks running in COTSon

(cont.)

NAS Parallel Benchmarks 3.3 -- EP Benchmark

Number of random numbers generated: 536870912
Number of active processes: 32

EP Benchmark Results: CPU Time = 5.5777, N=2" 28

NAS Parallel Benchmarks 3.3 -- FT Benchmark
No input file inputft.data. Using compiled defaults

Size . 256x 256x 128 (Class A)
Iterations 6, Number of processes : 32
Processor array 1x 32, Layout type : 1D

NAS Parallel Benchmarks 3.3 -- IS Benchmark

Size: 8388608 (class A), Iterations: 10

Number of processes: 32, IS Benchmark Completed
Class = A Size = 8388608
lterations = 10

NAS Parallel Benchmarks 3.3 -- LU Benchmark
Size: 64x 64x 64 (Class A),lterations: 250
Number of processes: 32

NAS Parallel Benchmarks 3.3 -- MG Benchmark
No input file. Using compiled defaults

Size: 256x 256x 256 (class A)

Iterations: 4, Number of processes: 32

EP 1-4
EP 2-4
EP 4-4
FT1-4
FT2-4
FT 4 -4
1S 1-4
1S 2 -4
1S4 -4
LU 1-4
LU 2 -4
LU 4 -4
MG 1-4

MG 2 -4

Time in
seconds

Mop/s Mop/s/
total process
410.53
4.9301 108.9 3.4
5.5777 96.25 3.01
49324 108.85 3.4
187.25 38.11 1.19
185.43 38.49 1.2
201.85 35.36 1.1
2.59 32.39 1.01
2.67 31.45 0.98
2.57 32.64 1.02
188.96 631.33 19.73
185.15 644.32 20.14
183.93 648.6 20.27
171.15 22.74 0.71
176.11 22.1 0.69

Plurality

. Plurality: http://www.plurality.com/profile.html

TERAFLUX

Architecture: general-purpose accelerator for
multicore/manycore system-on-chip (SoC)

Task-oriented programming model: the programmer has to
perform a partitioning of the program into specific tasks (task-
map)

The body of each task is a traditional sequential code
Each core is a RISC processor

Scheduler, synchronization and load balancing among cores
are done by a complex hardware subsystem that
communicates with all the RISC processors

Uniform shared memory access

CUDA

- Programming model: extensions to standard C
anguage (CUDA libraries)

- DRAM memory addressing + on-chip shared
memory

- However a single process must run spread
across multiple disjoint memory spaces (?7?)

- Recursive functions are not supported (must be
converted to loops)

- Bus bandwidth and latency between CPU and

GPU may be a bottleneck (acceleratore esterno)
TERAFLUX

TFlux

. TFlux:

- Paralell processing system targeted to
commodity, Linux-based shared-memory
multiprocessor systems

- Data-Driven multi-threading

- Programming model: takes as input a C
orogram, argumented with TFlux-specific
compiler directives (#pragma's)

- Everything implemented in software

TERAFLUX

Subset Static Interleaved (SSI)

Interleaved threads

- Advantage: operations latencies become shorter Iin
terms of executed instructions from the same thread

. Combination of blocked multithreading and static
Interleaved multithreading:

- A set of background threads + a set of foreground
threads. Foreground threads are interleaved until a stall
occurs (e.g. cache miss). When a foreground thread
stalls and a background thread is ready for execution we
exchange them so that the foreground thread becomes
a background thread and vice versa

. . TSU: task scheduling unit (in hardware)
TERA" LUX

