
Exploiting Dataflow Parallelism

in Teradevice Computing

University of Cyprus

University of Manchester

University of Siena

University of Augsburg

INRIA

Barcelona
Supercomputing Center

TERA LUX.EUF

Roberto Giorgi – University of Siena (coordinator)

Cagliari, Italy – Computing Frontiers

16/05/2012

1

TERAFLUX

What is TERAFLUX about

Architecture+Programmability+Reliability

of

Future (single chip)

Many-cores

(targeting 1000+ cores)

2Roberto Giorgi – giorgi@unisi.it --- http://teraflux.eu

TERAFLUX

Future Scenarios

G. Hendry, K. Bergman, “Hybrid
On-chip Data Networks”,
HotChips-22, Stanford, CA –
Aug. 2010

== 3D stacking, 8nm, 3D transistors, Graphene

Pawloski, May 2011, Exascale Seminar, Ghent

3

Fab D1X (OR), 42 (AZ) starting the 14nm node in 2013

Roberto Giorgi – giorgi@unisi.it --- http://teraflux.eu

TERAFLUX

Fundamental approach: DATAFLOW

A Scheme of Computation in which
an activity is initiated by presence of

the data it needs to perform its
function

(Jack Dennis)

4Roberto Giorgi – giorgi@unisi.it --- http://teraflux.eu

TERAFLUX

Recent Projects/Efforts towards

DATAFLOW
• Maxeler (UK) selling “dataflow

computer” to J.P. Morgan �

about 350x speedup vs.

standard x86 cores

• DARPA funding 25M$ for

UPHC program, encompassing:

– Gao’s dataflow execution model

(codelet based) – SWARM by ETI

– Intel’s Runnamede project

5

UPHC=Ubiquitus

High-Performance Computing

Roberto Giorgi – giorgi@unisi.it --- http://teraflux.eu

TERAFLUX

DRAMDRAMDRAMDRAM

NoC

SC

AC=Auxiliary Core

SC=Service Core

IOx=I/O or SC Core

IO1

(disk)

IO2

(Keyboard)

IO3

(NIC)

AC AC AC AC AC AC AC AC

AC AC AC AC AC AC AC AC

AC AC AC AC AC AC AC AC

AC AC AC AC AC AC AC AC

AC AC AC AC AC AC AC AC

AC AC AC AC AC AC AC AC

AC AC AC AC AC AC AC AC

AC AC AC AC AC AC AC AC

AC AC AC AC AC AC AC AC

AC AC AC AC AC AC AC AC

AC AC AC AC AC AC AC AC

AC AC AC AC AC AC AC AC

TERAFLUX – Future Many-cores
Key Challenges: Architecture+Programmability+Reliability

TERAFLUX Key Facts:

• FET – Integrated Project – 10

Partners – 4 years – 2010-2013

• 7.5 Meuro Total cost (5.7 Meuro

EU funded)

TERAFLUX-INCO Key Facts:

• FET – EU Worldwide Cooperation –

Extends TERAFLUX to an additional

USA partner for 21 months

• 546 Keuro Total cost (420 Keuro EU

funded)

Roberto Giorgi – giorgi@unisi.it --- http://teraflux.eu

7

Abstraction Layer

and Reliability Layer

Compilation

Tools

Source code

Programming

Model

Data

dependencies
Transactional

memory

Teradevice

hardware

(simulated)

Threads

Virtual CPUs

Extract TLP Locality optimizations

T1

T2T2

possibly

1,000-10,000 cores...

WP2

WP3

WP4

WP5

WP7

WP6

VCPU VCPU VCPU VCPU VCPU

PC PC PC P PCPU PCPU PCPUPCPUPC PCPU PCPUPCPU

APPLICATIONSAPPLICATIONS

• 1000 Billion- or 1 TERA-

device computing

platforms pose new

challenges:
– (at least)

programmability,

complexity of design,

reliability

• TERAFLUX context:
– High performance

computing and

applications (not

necessarily embedded)

• TERAFLUX scope:
– Exploiting a less

exploited path

(DATAFLOW) at each

level of abstraction

Working Hypothesis
TERA LUX.EUF

Roberto Giorgi – giorgi@unisi.it --- http://teraflux.eu

WP1 Management

TERAFLUX

Cj:

CL$H

PU
Core level HW

support

(e.g. LTSU+LFDU)

LEGENDA:

n = # of nodes

m = # of cores per node

u= # of DRAM controllers insisting on the

Unified Physical Address Space

z = # of I/O Hubs

Cj = j-th core (j=1..m)

MC = Memory Controller

DTSU = Distributed Thread-Scheduler Unit

DFDU = Distributed Fault-Detection Unit

LL$H = Last Level Cache Hierarchy

NODE

OPTIONAL

NoC

N1
…

chip

Nn

NI NI NI NI

NI

C1

NI

Cm… LL$H

Nk:

DTSU

LOCAL INTERCONNECT

MEMORY

MC

NI

NODE LEVEL

CHIP LEVEL

CORE LEVEL

node

core

EXTERNAL

or OTHER LAYER

CL$H = Core Level Cache Hierarchy

PU = Processing Unit

LTSU = Local Thread-Scheduler Unit

LFDU = Local Fault-Detection Unit

Nk = k-th Node (k=1..n)

NI = Network Interface

NoC = Network on Chip

DFDU

I/O hub

NI

DEVICESDRAMMEMORYDRAMMEMORY

MEMORY

MC …

…

Roberto Giorgi – giorgi@unisi.it --- http://teraflux.eu

TERAFLUX

Our pillars

• FIXED and MOST-USED ISA (x86)

• MANYCORE FULL SYSTEM SIMULATOR (COTSon)

• REAL WORLD APPLICATIONS (e.g. GROMACS)

• SYNCHRONIZATION: TRANSACTIONAL MEMORY

• GCC based TOOL-CHAIN

• OFF-THE-SHELF COMPONENTS FOR CORES, OS,

NOC,MEMORY HIERARCHY

• FDU AND TSU (Fault Detection Unit and Thread

Scheduling Unit)

9Roberto Giorgi – giorgi@unisi.it --- http://teraflux.eu

TERAFLUX

A REVIEW OF RECENT MANY-CORES

Roberto Giorgi – giorgi@unisi.it --- http://teraflux.eu

TERAFLUX

HotChips 2011

• Hot Chips papers suggest that the rest of the

world is moving in a different direction: large

numbers of relatively simple CPUs. But the trend

is reinforcing a long-appreciated set of

questions—as the number of cores grows, how

do you deal scalability with interconnect,

memory hierarchy, coherency, and intra-thread

synchronization? Answers to these questions

depend on the size of the design, the application

space, and the heritage of the design team.

R. Wilson, EETimes, 24/8/2011Roberto Giorgi – giorgi@unisi.it --- http://teraflux.eu

TERAFLUX

SARC Architecture

The SARC architecture, IEEE micro, Oct. 2010, vol. 30, n. 5, pp. 16-29

More recently (20110908),

Dimitris Nikoloupos

confirmed me that there

won’t be anymore the LS

as it will be integrated in

the L2.

Roberto Giorgi – giorgi@unisi.it --- http://teraflux.eu

TERAFLUX

IBM BlueGene/Q

• Ruud Haring, The IBM Blue Gene/Q Compute chip+SIMD floating-point unit,
HotChips Symposium, Aug 2011.

Rather than replicate more

than 18 of these large

cores, IBM chose to give

each core hardware

support for four

concurrent threads, so

under ideal circumstances

the chip can behave almost

as a 64-CPU system

Roberto Giorgi – giorgi@unisi.it --- http://teraflux.eu

TERAFLUX

BlueGene/Q module and system

A. Stiller – translation from the original article from German in c’t by Marcel Sieslack

TERAFLUX

Cavium – Octeon II CN6880

Cavium OCTEON II CN6880 Multi-Core MIPS64 Processor, HotChips Symposium, Aug. 2011.

Cavium relies primarily on

locks for synchronization,

assisted by facilities in the

scheduler hardware

Roberto Giorgi – giorgi@unisi.it --- http://teraflux.eu

TERAFLUX

Octeon II (2)

Roberto Giorgi – giorgi@unisi.it --- http://teraflux.eu

TERAFLUX

Godson-T

Cui HM, Wang L, Fang DR et al. Landing stencil code on Godson-T. JOURNAL OF COMPUTER SCIENCE
ANDTECHNOLOGY 25(4): 886–894 July 2010.

Roberto Giorgi – giorgi@unisi.it --- http://teraflux.eu

TERAFLUX

TERAFLUX

K-Computer

Mitsuo Yokokawa, Fumiyoshi Shoji, Atsuya Uno, Motoyoshi Kurokawa, and Tadashi Watanabe. 2011. The K computer: Japanese next-generation
supercomputer development project. InProceedings of the 17th IEEE/ACM international symposium on Low-power electronics and design (ISLPED '11).

Roberto Giorgi – giorgi@unisi.it --- http://teraflux.eu

TERAFLUX

K-Computer (2)

• S. Fumiyoshi, The K Computer: Project Overview

Roberto Giorgi – giorgi@unisi.it --- http://teraflux.eu

TERAFLUX

IBM Cyclops-64

Juergen Ributzka, Yuhei Hayashi, Joseph B. Manzano, and Guang R. Gao. 2011. The elephant and the mice: the role of non-strict fine-grain synchronization
for modern many-core architectures. In Proceedings of the international conference on Supercomputing (ICS '11). ACM, New York, NY, USA, 338-347.

TERAFLUX

TERAFLUX RESEARCH OVERVIEW

Roberto Giorgi – giorgi@unisi.it --- http://teraflux.eu 22

TERAFLUX

WP2 - APPLICATIONS
• MPI applications

• Measures with executions

with 16, 32, 64, 128 procs.

• Linear regression projections

• Off-chip Memory Bandwidth

– 1K cores will need more than

256GB/s sustained bandwidth

– 3x than current DDR3

• Total memory footprint for MPI applications

– Total memory footprint increases with the number of processors

– Manycores with more than 100 cores will require a few

dozens GBs of main memory

• Alternative programming models are required to deal with memory

requirements for scalability

M. Pavlovic, et al. “On the Memory System Requirements of Scientific Applications:

Four Case Studies”, In IEEE Intl. Symp. On Workload Characterization (IISWC), Nov 2011.
Roberto Giorgi – giorgi@unisi.it --- http://teraflux.eu

TERAFLUX

WP3 – PROGRAMMING MODEL

Transactions and Dataflow additions to Scala

– Modified to the Scala compiler to include transactional

constructs – surveyed other possibilities using closures

– Runtime STM support

– Statically Typed Dataflow Library

– Reimplementation of the Scala parallel collection using

dataflow plus transactions

– Analysis for Lee-TM of benefits of Dataflow plus transactions

Daniel Goodman, Behram Khan, Salman Khan, Chris Kirkham, Mikel Lujan and Ian Watson.

MUTS: Native Scala Constructs for Software Transactional Memory. In: Scala Days Workshop,

Stanford, California, June 2-3, 2011.

http://apt.cs.man.ac.uk/projects/TERAFLUX/MUTS/

Roberto Giorgi – giorgi@unisi.it --- http://teraflux.eu

TERAFLUX

WP4 – COMPILATION TOOLS

25

Feng Li, Antoniu Pop, and Albert Cohen. Extending loop distribution

to ps-dswp. In: 1st Workshop on Intermediate Representations

(WIR’11, associated with CGO), Chamonix, France, April 2011.

Roberto Giorgi – giorgi@unisi.it --- http://teraflux.eu

TERAFLUX

WP5 - RELIABILITY

• DOUBLE EXECUTION detects control flow AND data errors

• Runs each thread twice, once

as a leading thread t and

second time as a trailing thread t’

• The duplicated threads can run on

the same core or on different cores

of the same node/cluster

• Each execution generates signature of output results

• At completion compare the two signatures, if consistent,

the D-TSU writes its results to subsequent thread frames

• If not, no commitment

and recovery

Sebastian Weis, Arne Garbade, Julian Wolf, Bernhard Fechner, Avi Mendelson,

Roberto Giorgi, and Theo Ungerer. A Fault Detection and Recovery

Architecture for a Teradevice Dataflow System. In Data-Flow Execution Models

for Extreme Scale Computing (DFM) 2011 Workshop Proceedings. IEEE

Computer Society, 2011

Roberto Giorgi – giorgi@unisi.it --- http://teraflux.eu

TERAFLUX

WP6 - ARCHITECTURE

27

void main() {

 int a = 4;

 int b = 4;

 int add, mul, c;

 add = a + b;

 mul = a * b;

 c = mul/add;

}

.c (sequential)

Roberto Giorgi – giorgi@unisi.it --- http://teraflux.eu

.x86 assembly (parallel)

add=tread(FP 4 |2)

mul=tread(FP 4 | 4)

c = mul/add

tdestroy

FP2. add FP3. mul

FP1. main

FP4. div

a=tread(FP2|2)

b=tread(FP2|4)

twrite(FP4|2,a+b)

a=tread(FP2|2)

b=tread(FP2|4)

twrite(FP4|4,a*b)

FP4=tcschedule(div, 2)FP2=tschedule(add, 3)

twrite(FP2|2,a)

twrite(FP2|4,b)

twrite(FP3|2,a)

twrite(FP3|4,b)

FP3=tschedule(mul,3)

Other Instructions

Frame Allocation Instruction

Node: Frame ID. Thread Name

TERAFLUX 28

main: movq $4, %R8

movq $4, %R9

movq $1, %RAX

cmpq $1, %RAX

TSCHEDULE $add, $3, %R10

TSCHEDULE $mult, $3, %R11

TSCHEDULE $div, $2, %R12

TWRITE %R8, %R10, $2

TWRITE %R9, %R10, $3

TWRITE %R12, %R10, $4

TWRITE %R8, %R11, $2

TWRITE %R9, %R11, $3

TWRITE %R12, %R11, $4

TDESTROY

mult: TREAD $2, %R8

TREAD $3, %R9

TREAD $4, %R10

movq %R8, %RAX

mulq %R9

movq %RAX, %R11

TWRITE %R11, %R10, $3

TDESTROY

add: TREAD $2, %R8

TREAD $3, %R9

TREAD $4, %R10

movq %R8, %R11

addq %R9, %R11

TWRITE %R11, %R10, $2

TDESTROY

div: TREAD $2, %R8

TREAD $3, %R9

movq $0, %RDX

movq %R9, %RAX

divq %R8

movq %RAX, %R10

TDESTROY

.x86 assembly (parallel)

Roberto Giorgi – giorgi@unisi.it --- http://teraflux.eu

TERAFLUX

T* (or T86) ISE: TSCHEDULE/TDESTROY
T* INSTRUCTIONS IMPLIED COMPILER TARGET

Synopsis TSCHEDULE RS1, RS2, RD TSCHEDULE(<IP>, <SC>, &<frame_pointer>)

Description This instruction allocates the resources (a DF-frame of size RS2 words and a corresponding

entry in the Distributed Thread Scheduler – or DTS) for a new DF-thread and returns its

Frame Pointer (FP) in RD. RS1 specifies the Instruction Pointer (IP) of the first instruction of

the code of this DF-thread and RS2 specifies the Synchronization Count (SC). Finally the

zero flag is logically negated.

Notes The allocated DF-thread is not executed until its SC reaches 0. The TSCHEDULE can be

conditional or non-conditional based on the value stored in the zero flag. If the zero flag is

set to 1 then the TSCHEDULE will take effect, otherwise it is ignored. Two subsequent

TSCHEDULE implement an if-then-else.

Synopsis TDESTROY TDESTROY

Description The thread that invokes TDESTROY finishes and its DF-frame is freed, (the corresponding

entry in the Thread Scheduling Unit is also freed).

Notes -

Antoni Portero, Zhibin Yu, Roberto Giorgi, "T-Star (T*): An x86-64 ISA Extension to support thread execution on many

cores", HiPEAC ACACES-2011, ISBN:978 90 382 17987, Fiuggi, Italy, July 2011, pp. 277-280.

TERAFLUX

T* INSTRUCTIONS IMPLIED COMPILER TARGET

Synopsis TWRITE RS, RD, offset *(<frame_pointer> + <offset>) = (<source_register>)

Description The data in RS is stored into the DF-frame pointed to by RD at the specified offset.

Notes Side Effect: The Distributed Thread Scheduler decrements the SC of the corresponding DF-

thread entry (located through the FP): SCFP = SCFP-1

Synopsis TREAD offset, RD (<destination_register>) = *(<self_frame_pointer> +

<offset>)

Description Loads the data indexed by 'offset' from the self (current thread) DF-frame into RD.

Notes Assumption: the DTS has to load into the register implicitly used by TREAD the value

<self_frame_pointer>. In a x86-64 implementation, we can reserve RAX for this purpose.

T* (or T86) ISE: TWRITE/TREAD

Roberto Giorgi – giorgi@unisi.it --- http://teraflux.eu

TERAFLUX

T* INSTRUCTIONS IMPLIED COMPILER TARGET

Synopsis TALLOC RS1, RS2, RD <pointer> = TALLOC (<size>, <type>)

Description Allocates a block of memory of RS1 words. The pointer to it is stored in RD. RS2 specifies

the special purpose memory type.

Notes The Distributed Thread Scheduler tracks the memory allocated. An implementation can

code <type> in the 2 LSB of <size>

Synopsis TFREE (RS) TFREE(<pointer>)

Description Frees memory pointed to by RS.

Notes The Thread Scheduling Unit tracks the memory deallocated.

T* (or T86) ISE: TALLOC/TFREE

Roberto Giorgi – giorgi@unisi.it --- http://teraflux.eu

TERAFLUX

DTS – Distributed Thread Scheduler
(formerly called TSU)

NoC

NI NI

…

NI NI

LTSU1,1 LTSU1,m

DTSU1

…
N1:

LTSU1,n LTSUn,m

DTSUn

…
Nn:

of cores = n x m n = # of nodes m = # of cores per node

32Roberto Giorgi – giorgi@unisi.it --- http://teraflux.eu

TERAFLUX

Chip

Distributed Thread Scheduler

A 2-node x 4-core example

C11

C14

C12

C13

• Core (Cjk)

– Off-the-shelf cores (may include L1,

L2slice)

– Minimal ISA extension

• Local Thread Scheduling Unit (LTSU)

– Manages threads on this Core

• Distributed Thread Scheduling Unit

(DTSU)

– Distributes threads among Nodes

• Node

– Groups Cores+Resources

Node1

C21

C24

C22

C23

Node2

33Roberto Giorgi – giorgi@unisi.it --- http://teraflux.eu

TERAFLUX

Scheduling Example

C11

C14

C12

C13

C21

C24

C22

C23

• LTSU11 � DTSU1:
– I need a new frame

• DTSU1 � LTSU13:
– You’re available, give one frame to LTSU11

• LTSU13 � LTSU11:
– Here is a frame you can use

• LTSU14 � DTSU1:

– “I need a new frame”

• DTSU1 � DTSU2:

– LSE14 needs a frame, I don’t have it

• DTSU2 � LTSU22:

– Give a frame to LSE14

– LTSU22 � LTSU14:

– Here is a frame you can use

What if every PE in the cluster is busy?

Fast communication � low overhead

Node2

Node1

34Roberto Giorgi – giorgi@unisi.it --- http://teraflux.eu

TERAFLUX

Fine-Grain Thread Scheduling
Plurality CUDA TFlux SSI DTA

HW/SW HW + SW HW + SW SW HW HW
Prog. Model

Exec. Model

Architecture

Custom C
language
extensions

Custom C
language
extensions

Custom C
preprocessor
macros
(#pragma)

Standard thread-
oriented C
libraries
(pthreads)

Standard thread-
oriented C
libraries
(pthreads)

- Pool of RISC
processors
- Uniform shared
memory
- Hardware
scheduler ,
synchronizer and
load balancer

- Each thread
block is split into
warps (thread
block.
- Each thread
block is executed
by only one
multiprocessor.
- A multi-
processor can
execute several
blocks
concurrently.

High-level
threads are
mapped to OS
threads, using the
standard OS
programming
interfaces as
backend.

Subset static
interleaved
scheduling of
fine-grained /
coarse-grained
threads
performed by a
hardware Task
Scheduling Unit
(TSU)

- Decoupling
memory and
execution activity
of non-blocking
threads.
- Threads are
synchronized and
communicate
each other in a
producer-
consumer
fashion.

Complex
hardware
subsystem:
synchronizer,
scheduler, load
balancer

SIMD, on-chip
shared memory

Everything is
implemented in
software: can run
on any general
purpose
architecture

Hardware
scheduler (TSU)
+ extensions to a
VLIW prototype

Thread
management and
frame memory
management
implemented in
hardware

DTA=Decoupled Threaded Architecture

Roberto Giorgi – giorgi@unisi.it --- http://teraflux.eu

SSI=Subset Static Interleaved

TERAFLUX

fib(21): number of threads

0

50
00

00

10
00

00
0

15
00

00
0

20
00

00
0

25
00

00
0

30
00

00
0

35
00

00
0

40
00

00
0

0

10000

20000

30000

40000

50000

60000

70000

80000

preload
exec
poststore
wait_table
total

clock cycle

of

 th
re

ad
s

36Roberto Giorgi – giorgi@unisi.it --- http://teraflux.eu

TERAFLUX
COTSon

Simulator

infrastructure

. . .

Simulator

“illusion”

(SW should

only assume

what seen at

this level) X86-64 ISA

cruncher-1

X86-64 ISA

cruncher-2

X86-64 ISA

cruncher-3

X86-64 ISA

cruncher-N

LINUX +

TFX scheduler patch awareness

TSU

FDU

scheduling

TFX APPS

(e.g. GROMACS)

LEGACY APPS

(e.g. ORACLE DB)

(x86-64 ISA & NEW Memory Model)

DF-threads L-/S-threads

WP7: Evaluating a MANY-CORE chip of the future

(2020), i.e., 1000+ cores on a chip

TERAFLUX

AMD SIMnow and COTSon

38Roberto Giorgi – giorgi@unisi.it --- http://teraflux.eu

TERAFLUX

COTSon Overview

39Roberto Giorgi – giorgi@unisi.it --- http://teraflux.eu

TERAFLUX

The ambition of TERAFLUX is however

to be able of changing such machine in a flexible way,

while tackling research challenges on programmability,

architectural design and reliability.

Therefore, we have the need to stress the COTSon platform,

in order to being able to simulate 1000 cores.

40Roberto Giorgi – giorgi@unisi.it --- http://teraflux.eu

TERAFLUX

Comparison among different approaches for doing research related to 1000-core

computing system (Information revised from data of the RAMP project)

SMP Cluster FPGA Emulator Simulator

Scalability

(1K cores)

C A A A A

Cost (1K cores) F(€40M) C B(€0.1-0.2M) A+ (€0.01M) A+(€0.01M)

Power/Space (Kw, racks) D (120 kw, 12

racks)

D (120 kw, 12

racks)

A (1.5 kw, 0.3

racks)

A+ (0.1 kw,

0.1racks)

A+ (0.1 kw, 0.1

racks)

Observability D C A+ A+ A+

Reproducibility B D A+ A+ A+

Reconfigurability D C A+ A+ A+

Credibility A+ A+ B+/A- F/D C

Development time B B C A+ A+

Performance (clock) A (2GHz) A(3GHz) C (0.1 GHz) B(≈ 0.9 of original) C(1/10 to 1/1000

SMP)

x86-64 ISA A+ A+ F A+ A+

Modifiable F F B A A

GPA D D B+/A- B A

41Roberto Giorgi – giorgi@unisi.it --- http://teraflux.eu

TERAFLUX

FUNCTIONAL/TIMING SIMULATION

Functional
Simulator

Timing
Simulator

Functional-First (Trace-driven)
+Fast
- No timing feedback

+ Timing feedback
- Tight Coupling
- Very slow

Timing and Functional
Simulator Integrated (SimOS)

- Complex, no reuse, very slow

Timing-Directed (Exec-driven)Functional
Simulator

Timing
Simulator

�Complete Timing
�No? Function

�No Timing
�Complete Function

Timing-First (Multifacet)Functional
Simulator

Timing
Simulator

�Complete Timing
�Partial Function

�No Timing
�Complete Function

+ Timing feedback
+ Using existing simulators
+ Software development advantages
- Slow

Source: Multifacet Project (www.cs.wisc.edu/multifacet) -

[Mauer02-sigmetrics-Full_System Timing_First Simulation]

sp
e

e
d

�Complete Function �Partial Timing

a
cc

u
ra

cy

Roberto Giorgi – giorgi@unisi.it --- http://teraflux.eu

TERAFLUX

COTSon: FUNCTIONAL-DIRECTED

• A variant of “functional first”
• Adds timing feedback at coarse granularity

(100s – 1000s of instructions)

• Applications see an approximation of time
• May miss some fine-grain timing interaction

• Compatible with fast (caching) emulators and samplers

Roberto Giorgi – giorgi@unisi.it --- http://teraflux.eu

TERAFLUX

OTHER RECENT X64 SIMULATORS

44

Multi-node

Heirman120401-ISPASS Tutorial

The SNIPER multi-core simulator

Roberto Giorgi – giorgi@unisi.it --- http://teraflux.eu

Timing-directed/integrated

TERAFLUX

Simulation booting up 1024 cores. (1) COTSon execution of 32 SimNow instances.

(2) Each instance manages 32 cores. Host: 48 cores, 256 GB memory

Note: the simulation is PARALLEL at GUEST NODE-LEVEL and it’s also possible

to distribute the simulation on several HOST NODES 45Roberto Giorgi – giorgi@unisi.it --- http://teraflux.eu

TERAFLUX

INITIAL EXPERIMENTAL RESULTS

The proposed simulation framework has

been validated running applications and

benchmarks on a target machine with up

to 1024 cores, operating in accordance

with dataflow principle on standard cores

We run several applications and

benchmarks based on well established

programming models (mainly OpenMP

and MPI):

• NAS Parallel Benchmark (NPB)

• Graph500 and HPL 2.0 Linpack

• Sequential Recursive Fibonacci

number of cores

ti
m

e
 (

m
s)

46Roberto Giorgi – giorgi@unisi.it --- http://teraflux.eu

TERAFLUX

Major Technical Innovations in TERAFLUX

• Fragmenting the Applications in Finer grained DF-threads:

– DF-threads allow an easy way to decouple memory accesses, therefore hiding

memory latencies, balancing the load, managing fault, temperature information

without fine grain intervention of the software.

• Possibility to repeat the execution of a DF-thread in case this thread happened

to be on a core later discovered as faulty

• Taking advantage of a “direct” dataflow communication of the data (through

what we call DF-frames).

• Synchronizing threads while taking advantage of native dataflow mechanism

(e.g. several threads can be synchronized at a barrier)

– DF-threads allow (atomic) Transactional semantics (DF meets TM)

• A Thread Scheduling Unit would allow fast thread switching and scheduling,

besides the OS scheduler; scalable and distributed

• A Fault Detection Unit works in conjunction with TSU

47Roberto Giorgi – giorgi@unisi.it --- http://teraflux.eu

TERAFLUX

TERAFLUX SIMULATOR (COTSon)

http://cotson.sf.net

48

HP-Labs COTSon is OPEN-SOURCE

Roberto Giorgi – giorgi@unisi.it --- http://teraflux.eu

TERAFLUX
Exploiting dataflow parallelism in Teradevice Computing

PROJECT NUMBER: 249013

http://teraflux.eu

FUTURE AND

EMERGING

TECHNOLOGIES

PROJECT N. 249013

SEVENTH FRAMEWORK

PROGRAMME THEME

FET proactive 1 (ICT-2009.8.1)

Concurrent Tera-Device Computing

TERAFLUX

BACKUP SLIDES

50Roberto Giorgi – giorgi@unisi.it --- http://teraflux.eu

TERAFLUX

TERAFLUX TOOLCHAIN (Jan. 2011)

Author -

Partner

51

TFX

BINARY
(TBD)

S2S

(PM

transformatio

n)

COMPILATION

TOOLS

TFX

C-LEVEL
(TBD)

TFX

C-LEVEL
(TBD)

TFX

SOURCE
(HMPP, OPENMP,

SCALA, STARSS,…)

TFX

SOURCE
(DDM, HMPP, OPENMP,

SCALA, STARSS,…)

S2S

(PM

transformation)

Roberto Giorgi – giorgi@unisi.it --- http://teraflux.eu

TCRQ – simple FIFO queue

FFNCID

Free frame table

Control logic

Distributed TSU - structures

• FreeFrameTable (CID – Core ID, FFN – number of free frames)
• Keeps track of the occupancy of processors inside a cluster
• Updated on each TDestroy and accepted TSchedule

• TCRQ – ThreadScheduleRequestQueue
• Holds unserved ThreadScheduleRequest messages
• Message is pushed into queue when there are no free local resources
• Message is popped from the queue when either TDestroyor BroadcastResponse arrives

• Control logic
• Responsible for both inter and intra node communication and updating the messages inside
a scheduler

Roberto Giorgi – giorgi@unisi.it --- http://teraflux.eu

V ThID Offset DATAV M ThID Fptr

Map table Store buffer

• Map table (V – Valid, M – Mapped, ThID – thread ID, Fptr – Frame pointer)
• Keeps track of the issued resource requests for the execution of new threads
• a ThID is assigned to a thread when new Tschedule instruction occurs; it is used just inside that core
• a Fptr is assigned when a TScheduleResponse message arrives; it is unique globally in the system
• Can be cleared on the thread completion

• Store buffer (V – valid, ThID – thread ID, offset – for storing in a frame, DATA – data to store)
• Keeps track of the TStores issued for the threads that didn’t receive a TScheduleResponse yet (those kept
in Map table and still not mapped)
• On each TStore for the new thread that still doesn’t have resources assigned, a new entry is created
• When TScheduleResponse arrives, all entries are checked and TStore messages are sent (entry
invalidated) if there is any matching
• If TStore occurs for a thread that already has its resources assigned, there is no need to use the buffer

Non-blocking resource assignment - structure

Roberto Giorgi – giorgi@unisi.it --- http://teraflux.eu

TERAFLUX

Distributed Thread Scheduler Unit

• On new
TScheduleRequestMessage
checks the availability in
local node
– If yes – forwards it

– If no – put the message in
FRQ and send broadcast

• Message is removed from
FRQ when FfreeMessage or
BroadcastResponse arrive

• Other messages are just
forwarded

TSCHEDULE

TSCHEDULE

TSCHEDULE

TSCHEDULE

TSCHEDULE

TSCHEDULE

Roberto Giorgi – giorgi@unisi.it --- http://teraflux.eu

TERAFLUX

Local Thread Scheduling Unit

• On TScheduleRequestMessage

– Choose a free frame for execution of

the new thread

– Send TScheduleResponseMessage to

the issuing processor

• On TScheduleResponseMessage

simply update the continuation with

the frame identifier

• On store send DataStore message

(group them if the destination is the

same)

TSCHEDULE TSCHEDULE

TSCHEDULE

TSCHEDULE

TSCHEDULE

Roberto Giorgi – giorgi@unisi.it --- http://teraflux.eu

TERAFLUX

Non-blocking resource assignment (1)

• Avoid waiting from the distributed scheduler by introducing Virtual frame pointers
• Two additional structures – map table and store buffer

Even if we don’t speed-up the starting time of new threads, execution time is shorter and processor becomes
free earlier

Roberto Giorgi – giorgi@unisi.it --- http://teraflux.eu

TERAFLUX

One Physical Machine running two Virtual Machine instances that communicate

through the Virtual Network (Mediator).

ADVANTAGES

This setup can run both on a real machines (at least at small

scale for tests) AND on the COTSon simulator

It allows us to modify system parameters like e.g. number of

cores in each simulated instance.

It allows for a parallelization of the simulation (the several

instances are running in parallel on the available cores – load

balancing automatically provided by the Host OS scheduler).

Possible to avoid copying buffers among instances because

they reside in the Host Shared Memory Network

Possibility to take advantage of RVI/VT-x virtualization

mechanisms across different Physical Machines (under

development).

The communication and synchronization among the

simulation instances adds up to the Application traffic, but

could bypass TCP/IP and avoid using the Physical

Interconnection Network.

No need to use the Physical Network.

2010-09-

13

57

APP + MPI

OS Guest

CPU (1 or more cores)

APP + MPI

OS Guest

HDD ImageVirtual

Interconnection

NETWORK

SIMNow

OS Host

COTSon SIMNowCOTSon

DISADVANTAGES

• Taking into account that we aim to flexibly change the

programming model and architecture (e.g. the

dataflow based execution model and architecture),

this setup may end up in poor performance when N

(number of nodes) increases.

• Tightens the Application to the Machine, which is

exactly the opposite direction that we follow globally

in TERAFLUX: we aim to decouple the Application

(WP2) from the Machine with appropriate

Programming Models (WP3), Compilation Tools (WP4)

and Execution Models (WP6).

• The MPI run-time is constantly involved to

appropriately schedule the ready tasks/threads on the

available nodes.

• The Physical architecture that is more natural to model

is a Distributed Machine not like the general one we

aim in TERAFLUX.

Roberto Giorgi – giorgi@unisi.it --- http://teraflux.eu

TERAFLUX

VM instances governed by a Single Source Image (SSI) OS

DISADVANTAGES

This setup requires the use of a Distributed OS as Guest

OS (like e.g., Kerrighed [KERRIGHED10], which offers the

view of a unique SMP machine on top of a cluster) or in

general a SSI (Single System Image) OS.

Relatively poor performance when N (number of nodes)

increases;

Partially tightens the Application to the Machine, which is

in the opposite direction in respect to what we follow

globally in TERAFLUX: we aim to decouple the Application

(WP2) from the Machine with appropriate Programming

Models (WP3), Compilation Tools (WP4) and Execution

Models (WP6).

The underlying Guest Architecture is a “cluster”, which is

then more naturally mapped to a physical Distributed

Machine not a generic one like we aim in TERAFLUX.

2010-09-

13

58

APPLICATION

OS Guest

CPU (1 or more cores)

SIMNow (0)

OS Host

SIMNow

(999)
COTSon…SIMNow (1)

ADVANTAGES

• Allows us to run Shared Memory applications like OpenMP

ones (can still run MPI as if it was a single big node).

• Can run both on a real machines (at least at small scale for

tests) and on the COTSon simulator.

• It allows us to modify system parameters like e.g. number

of cores in each simulated instance.

• It allows for a parallelization of the simulation (the several

instances are running in parallel on the available cores –

load balancing automatically provided by the Host OS

scheduler).

• Possible to avoid copying buffers among instances because

they reside in the Host Shared Memory Network

• Possibility to take advantage of RVI/VT-x virtualization

mechanisms across different Physical Machines (under

development).

• The communication and synchronization among the

simulation instances adds up to the Application traffic, but

could bypass TCP/IP and avoid using the Physical

Interconnection Network.

• Load Balancing for the Application is managed by the Guest

OS

• No need to use the Physical Network.

Roberto Giorgi – giorgi@unisi.it --- http://teraflux.eu

TERAFLUX

One core aware of all the other cores

2010-09-13
59

DISADVANTAGES

• Relatively poor performance when N (number of nodes)

increases; however, as other simulator like COREMU

[Wang11] already demonstrated a high speed up in

simulations even with 255 cores, we have good confidence

that we can improve much the simulation speed going in a

similar direction.

• Requires some patches to the Linux OS; however we shall

need to patch anyway the Memory Manager and the

Scheduler in order to properly support the TERAFLUX threads

ADVANTAGES

• Allows us to run Shared Memory applications like OpenMP ones

(can still run MPI as if it was a single big node).

• Can run both on a real machines (at least at small scale for tests)

AND on the COTSon simulator as provided at the Month-1 of the

TERAFLUX project.

• It allows us to modify system parameters like e.g. number of cores

in each simulated instance.

• It allows for a parallelization of the simulation (the several

instances are running in parallel on the available cores – load

balancing automatically provided by the Host OS scheduler).

• Possible to avoid copying buffers among instances because they

reside in the Host Shared Memory Network.

• Possibility to take advantage of RVI/VT-x virtualization mechanisms

across different Physical Machines (under development).

• The communication and synchronization among the simulation

instances adds up to the Application traffic, but could bypass

TCP/IP and avoid using the Physical Interconnection Network.

• Load Balancing for the Application is managed by the Guest OS

• No need to use the Physical Network.

• No need to use a very different OS like an SSI OS.

• The underlying Guest Architecture is a shared memory machine,

however thanks to the availability of a global address space, there

is now full possibility of evolving the machine in a more “general

one” like the one we aim to evolve during the TERAFLUX project.

The TERAFLUX Execution Model can decouple completely the

architecture of the machine.

Roberto Giorgi – giorgi@unisi.it --- http://teraflux.eu

TERAFLUX

NAS benchmarks running in COTSon
• Machine 37nodes of 4 cores. One node Master and 36 Slaves
• Two examples from the set:

Time in secondsMop/s total Mop/s/process

BT 1-4 398.93 421.84 11.72

BT 2-4 422.08 398.7 11.08

BT 4-4 398.17 422.65 11.74

NAS Parallel Benchmarks 3.3 – CG
Size: 14000
Iterations: 15
Number of active processes: 32
Number of nonzeroes per row: 11
Eigenvalue shift: .200E+02

CG 1-4 46.26 32.35 1.01

CG 2-4 48.45 30.89 0.97

CG 4-4 46.65 32.08 1

NAS Parallel Benchmarks 3.3 -- BT Benchmark
No input file inputbt.data. Using compiled default
Class A: Size: 64x 64x 64
Iterations: 200 dt: 0.0008000
Number of active processes: 36

Roberto Giorgi – giorgi@unisi.it --- http://teraflux.eu

NAS Parallel Benchmarks 3.3 -- EP Benchmark
Number of random numbers generated: 536870912
Number of active processes: 32
EP Benchmark Results: CPU Time = 5.5777, N = 2^ 28

NAS Parallel Benchmarks 3.3 -- FT Benchmark
No input file inputft.data. Using compiled defaults
Size : 256x 256x 128 (Class A)
Iterations : 6, Number of processes : 32
Processor array : 1x 32, Layout type : 1D

NAS Parallel Benchmarks 3.3 -- IS Benchmark

Size: 8388608 (class A), Iterations: 10
Number of processes: 32, IS Benchmark Completed
Class = A, Size = 8388608
Iterations = 10

NAS Parallel Benchmarks 3.3 -- LU Benchmark
Size: 64x 64x 64 (Class A),Iterations: 250
Number of processes: 32

NAS Parallel Benchmarks 3.3 -- MG Benchmark
No input file. Using compiled defaults
Size: 256x 256x 256 (class A)
Iterations: 4, Number of processes: 32

Time in
seconds

Mop/s
total

Mop/s/
process

410.53
EP 1-4 4.9301 108.9 3.4
EP 2-4 5.5777 96.25 3.01
EP 4-4 4.9324 108.85 3.4
FT 1 -4 187.25 38.11 1.19
FT 2 -4 185.43 38.49 1.2
FT 4 -4 201.85 35.36 1.1
IS 1-4 2.59 32.39 1.01
IS 2 -4 2.67 31.45 0.98
IS 4 -4 2.57 32.64 1.02
LU 1-4 188.96 631.33 19.73
LU 2 -4 185.15 644.32 20.14
LU 4 -4 183.93 648.6 20.27
MG 1-4 171.15 22.74 0.71
MG 2 -4 176.11 22.1 0.69

NAS benchmarks running in COTSon
(cont.)

Roberto Giorgi – giorgi@unisi.it --- http://teraflux.eu

TERAFLUX

Plurality

● Plurality: http://www.plurality.com/profile.html
– Architecture: general-purpose accelerator for

multicore/manycore system-on-chip (SoC)

– Task-oriented programming model: the programmer has to
perform a partitioning of the program into specific tasks (task-
map)

– The body of each task is a traditional sequential code

– Each core is a RISC processor

– Scheduler, synchronization and load balancing among cores
are done by a complex hardware subsystem that
communicates with all the RISC processors

– Uniform shared memory access

TERAFLUX

CUDA

– Programming model: extensions to standard C
language (CUDA libraries)

– DRAM memory addressing + on-chip shared
memory

– However a single process must run spread
across multiple disjoint memory spaces (???)

– Recursive functions are not supported (must be
converted to loops)

– Bus bandwidth and latency between CPU and
GPU may be a bottleneck (acceleratore esterno)

TERAFLUX

TFlux

● TFlux:

– Paralell processing system targeted to
commodity, Linux-based shared-memory
multiprocessor systems

– Data-Driven multi-threading

– Programming model: takes as input a C
program, argumented with TFlux-specific
compiler directives (#pragma's)

– Everything implemented in software

TERAFLUX

Subset Static Interleaved (SSI)

● Interleaved threads

– Advantage: operations latencies become shorter in
terms of executed instructions from the same thread

● Combination of blocked multithreading and static
interleaved multithreading:

– A set of background threads + a set of foreground
threads. Foreground threads are interleaved until a stall
occurs (e.g. cache miss). When a foreground thread
stalls and a background thread is ready for execution we
exchange them so that the foreground thread becomes
a background thread and vice versa

● TSU: task scheduling unit (in hardware)

