

TERA^FLUX.EU

THALES

Exploiting Dataflow Parallelism in Teradevice Computing

University of Augsburg

Supercomputing Center

a Proposal to

Harness the Future Multicores

Roberto Giorgi – University of Siena (coordinator) Edinburgh – HiPEAC Computing Week 05/05/2010

1000 Billion- or 1 TERA- device computing platforms poses new challenges:

High performance computing and applications (not necessarily embedded)

Exploiting a less exploited path (DATAFLOW) at each level of abstraction

(at least) programmability, complexity of design, reliability

TERAFLUX

TERAFLUX

Integration Platform (WP7)

Goals:

What is about

TERAFLUX context:

TERAFLUX scope:

- provide an OPEN-SOURCE common platform that models a teradevice system
- Integrate workpackage results (ALL partners are contributing)
- Close to it: 1000 billion-device cores as modeled in the HP COTSon platform
 - Already established and validated (e.g., CORONA paper at ISCA-2008) *
 - Already tested for 1000 complex cores running SPLASH2 benchmarks **
 - PROPRIETARY code has to be removed/rewritten

Applications (WP2)

Reliability (WP5)

Architecture (WP6)

Programming model (WP3)

Compilation tools (WP4)

Common Platform (WP7)

- Workpackages will plug-in their research results into the platform and test/validate them
 - The new concepts will expand the platform toward a more programmable, less complex, more reliable teradevice system

* Vantrease, D. Schreiber, R. Monchiero, M. McLaren, M. Jouppi, N.P. Fiorentino, M. Davis, A. Binkert, N. Beausoleil, R.G. Ahn, J.H. "Corona: System Implications of Emerging Nanophotonic Technology", ISCA 2008, pp. 153-164, June 2008 ** Matteo Monchiero, Jung Ho Ahn, Ayose Falcon, Daniel Ortega, and Paolo Faraboschi, "How to simulate 1,000 cores", HPLABS, Tech Report: HPL-2008-190

WP2 Data **Transactional** WP3/Programming Model Source code WP4/CompilationExtract TLP **Locality optimizations** Tools Threads WP5 **Abstraction Layer** WP6 and Reliability Layer Virtual CPUs WP7 Teradevice 1,000-10,000 cores... hardware PCPU (simulated) PCPU PCPU PCPU PCPU PCPU

TERAFLUX

Reliability (WP5) and Architecture (WP6)

Goals:

- Creating a substrate of fine grain threads that will "flood" the architecture (WP6) with less pressure, e.g., to the memory subsystem
- lowering the number of faults by 90% compared to the same overall multi-/many-core processor without reliability techniques (WP5)

TERAFLUX

Applications (WP2)

- Goals:
 - Choose and characterize representative applications
 - Port applications to the new programming models
- E.G. NAMD models molecular dynamics and interactions
 - Used in biomedical research and
 - pharmaceutical industry (drug design) 3D space is modeled as grid of cells
 - TERAFLUX can avoid highly inefficient Message Passing (tested on BSC supercomputer) or Shared Memory (tested on a 128-node Altix)
- Scalability is an important issue on previous machines: dataflow scheduling (e.g. DMA assisted data communication and hardware thread scheduling) will manage more parallelism, more performance, more complex biostructures
- TERAFLUX will explicit inter-cell dependencies to exploit thread-level dataflow parallelism, schedule computation and communication, thus offering higher performance

Programmability (WP3) and Compilation Tools (WP4)

- Achieving a more scalable implementation of given applications
- More efficient code
- Integration of applications written in several programming styles
 - Productivity programmer (90% of cases)
 - Efficiency programmers
 - Ad-hoc dataflow programming
- Integration of dataflow and the Transactional Memory
 - Providing a more efficient implementation
- Advanced dataflow optimizations in the code
 - Aggressively tackling the CDFG of an application

FET joint activities

Joint Workshop

- A yearly (December) TERA-COMP focused workshop
- Increase the potential of interaction (e.g. HiPEAC, ARTIST, ...) communities (High Performance, Compilation, Embedded, ...)
- Joint strategy and roadmapping
 - Integration with IAB expertise
- Joint strategy and roadmapping
 - Seeking for more international cooperation, e.g., with NSF
 - Seeking for interaction with HiPEAC companies and members

TERA^FLUX

TERAFLUX

